RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI우수등재

        Three-Month Daily Consumption of Sugar-Sweetened Beverages Affects the Liver, Adipose Tissue, and Glucose Metabolism

        이가영,한지혜,맹효진,임수 대한비만학회 2020 The Korean journal of obesity Vol.29 No.1

        Background: Growing evidence suggests links between sugar-sweetened beverages (SSBs) and metabolic disorders. We investigated the effects of SSBs commonly consumed by adolescents and their relationships to glucose metabolism and fatty liver. Methods: We treated 7-week old male C57BL/6 mice with water (control) or one of three different SSBs, carbonated soda (Coca-Cola), sweetened milk coffee (Maxwell), or chocolate-added cocoa (Choco-Latte), for 13 weeks (n=10 in each group). Half of the animals were fed a regular chow diet and the other half a high-fat diet (40% fat). Body composition and biochemical variables were investigated at the end of treatment. Histology of the liver and adipose tissue, as well as molecular signaling related to glucose and lipid metabolism, were also evaluated. Results: During the 13-week treatment, mice treated with chocolate-added cocoa or sweetened milk coffee showed significantly greater increases in body weight compared with controls, especially when fed a high-fat diet. Fasting glucose level was higher in the three SSB-treated groups compared with the control group. Lipid droplets in the liver, fat cell size, and number of CD68-positive cells in adipose tissue were greater in the SSB-treated groups than in the control group. SSB treatments increased the expression of genes related to inflammatory processes in the liver and adipose tissue. Phosphorylation of AKT and glycogen synthase kinase in muscle was significantly reduced in SSB-treated groups. Conclusion: Daily consumption of SSBs over 3 months lead to metabolic impairment and weight gain and may contribute to development of metabolic diseases.

      • KCI등재

        Effects of Glucagon-Like Peptide-1 Analogue and Fibroblast Growth Factor-21 Combination on the Atherosclerosis-Related Process in a Type 2 Diabetes Mouse Model

        김진희,이가영,맹효진,Hoyoun Kim,배재현,김경민,임수 대한내분비학회 2021 Endocrinology and metabolism Vol.36 No.1

        Background: Glucagon-like peptide-1 (GLP-1) analogues regulate glucose homeostasis and have anti-inflammatory properties, but cause gastrointestinal side effects. The fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism that has poor pharmacokinetic properties, including a short half-life. To overcome these limitations, we investigated the effect of a low-dose combination of a GLP-1 analogue and FGF21 on atherosclerosis-related molecular pathways. Methods: C57BL/6J mice were fed a high-fat diet for 30 weeks followed by an atherogenic diet for 10 weeks and were divided into four groups: control (saline), liraglutide (0.3 mg/kg/day), FGF21 (5 mg/kg/day), and low-dose combination treatment with liraglutide (0.1 mg/kg/day) and FGF21 (2.5 mg/kg/day) (n=6/group) for 6 weeks. The effects of each treatment on various atherogenesisrelated pathways were assessed. Results: Liraglutide, FGF21, and their low-dose combination significantly reduced atheromatous plaque in aorta, decreased weight, glucose, and leptin levels, and increased adiponectin levels. The combination treatment upregulated the hepatic uncoupling protein-1 (UCP1) and Akt1 mRNAs compared with controls. Matric mentalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were downregulated and phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated in liver of the liraglutide-alone and combination-treatment groups. The combination therapy also significantly decreased the proliferation of vascular smooth muscle cells. Caspase-3 was increased, whereas MMP-9, ICAM-1, p-Akt, and p-ERK1/2 were downregulated in the liraglutide-alone and combination-treatment groups. Conclusion: Administration of a low-dose GLP-1 analogue and FGF21 combination exerts beneficial effects on critical pathways related to atherosclerosis, suggesting the synergism of the two compounds.

      • KCI우수등재
      • KCI우수등재
      • KCI등재

        Effects of Lobeglitazone, a New Thiazolidinedione, on Osteoblastogenesis and Bone Mineral Density in Mice

        김경민,진현진,이서연,맹효진,이가영,오태정,최성희,장학철,임수 대한내분비학회 2017 Endocrinology and metabolism Vol.32 No.3

        Background: Bone strength is impaired in patients with type 2 diabetes mellitus despite an increase in bone mineral density (BMD). Thiazolidinedione (TZD), a peroxisome proliferator activated receptor γ agonist, promotes adipogenesis, and suppresses osteoblastogenesis. Therefore, its use is associated with an increased risk of fracture. The aim of this study was to examine the in vitro and in vivo effects of lobeglitazone, a new TZD, on bone. Methods: MC3T3E1 and C3H10T1/2 cells were cultured in osteogenic medium and exposed to lobeglitazone (0.1 or 1 μM), rosiglitazone (0.4 μM), or pioglitazone (1 μM) for 10 to 14 days. Alkaline phosphatase (ALP) activity, Alizarin red staining, and osteoblast marker gene expression were analyzed. For in vivo experiments, 6-month-old C57BL/6 mice were treated with vehicle, one of two doses of lobeglitazone, rosiglitazone, or pioglitazone. BMD was assessed using a PIXImus2 instrument at the baseline and after 12 weeks of treatment. Results: As expected, in vitro experiments showed that ALP activity was suppressed and the mRNA expression of osteoblast marker genes RUNX2 (runt-related transcription factor 2) and osteocalcin was significantly attenuated after rosiglitazone treatment. By contrast, lobeglitazone at either dose did not inhibit these variables. Rosiglitazone-treated mice showed significantly accelerated bone loss for the whole bone and femur, but BMD did not differ significantly between the lobeglitazone-treated and vehicle-treated mice. Conclusion: These findings suggest that lobeglitazone has no detrimental effects on osteoblast biology and might not induce side effects in the skeletal system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼