RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        석회석을 이용하여 안정화한 중금속오염 논토양에서 토양과 식물체(벼) 간의 중금속 전이특성

        고일하,김의영,권요셉,지원현,주완호,김진홍,신복수,장윤영,Koh, Il-Ha,Kim, Eui-Young,Kwon, Yo Seb,Ji, Won Hyun,Joo, Wanho,Kim, Jinhong,Shin, Bok Su,Chang, Yoon-Young 한국지하수토양환경학회 2015 지하수토양환경 Vol.20 No.4

        The agricultural soil, meets soil environmental standards whereas agricultural product from the same soil does not meet permissible level of contaminants, is identified in the vicinity of the abandoned mine in Korea. This study estimated the stabilization efficiency of Cd and Pb using limestone through the flood pot test for this kind of agricultural paddy soil. We had the concentration of the monitored contaminants in soil solution for 4 months and analyzed fractionations in soil and concentrations in rice plant. In soil solution of plow layer, the reductive Mn had been detected constantly unlike Fe. The concentrations of Mn in limestone amended soil was relatively lower than that in control soil. This reveals that the reductive heavy metals which become soluble under flooded condition can be stabilized by alkali amendment. This also means that Cd and Pb associated with Mn oxides can be precipitated through soil stabilization. Pb concentrations in soil solution of amended conditions were lower than that of control whereas Cd was not detected among all conditions including control. In contaminants fractionation of soil analysis, the decreasing exchangeable fraction and the increasing carbonates fraction were identified in amended soil when compared to control soil at the end of test. These results represent the reduction of contaminants mobility induced by alkali amendment. The Cd and Pb contents of rice grain from amended soil also lower than that of control. These result seems to be influenced by reduction of contaminants mobility represented in the results of soil solution and soil fractionation. Therefore contaminants mobility (phytoavailability) rather than total concentration in soil can be important factor for contaminants transition from soil to agricultural products. Because reduction of heavy metal transition to plant depends on reduction of bioavailability such as soluble fraction in soil.

      • KCI등재

        안정화제로 사용된 황산칼슘비료의 물리적 형태에 따른 토양 비소 및 수은의 안정화와 식물체 전이특성

        고일하,권요셉,이민현,김정은,박소영,고주인,지원현 대한자원환경지질학회 2023 자원환경지질 Vol.56 No.5

        본 연구에서는 토양 내 비소 및 수은의 안정화제로 황산칼슘비료의 적용 가능성을 검토하였다. 아울러 황산칼슘비료의 물리적 특성(입자상, 미분상, 용액상)에 따른 비소 및 수은의 안정화 특성을 상추 재배 포트실험으로 비교?검토하였다. 34일 간의 상추 재배를 통해 확인한 비소 및 수은의 전이감소 효과는 대체적으로 70% 이상인 것으로 나타나 안정화제로서의 적용성을 확인하였다. 다만, 용액상 안정화제 처리조건에서 성장한 상추의 생체량은 대조구의 46% 수준으로 가장 낮았는데, 이는 안정화제로부터 유래된 영양물질의 유효도가 극단적으로 높아 오히려 식물체 성장을 저해한 것으로 판단되었다. 토양 내 비소 및 수은의 분획특성 확인결과 수은에서만 존재형태의 변화가 크게 나타났다. 수은은 안정화 처리된 토양에서 원소수은의 감소와 잔류형/황화물 형태의 증가가 확인되었는데, 이러한 경향은 용액상 > 미분상 > 입자상의 순서로 나타났다. 본 연구를 통해 대형 교반장비의 진입이 어려운 농경지에서는 용액상 처리제의 살포만으로 안정화 효과를 얻을 수 있음을 확인하였다. 다만, 높은 영양물질 유효도로 인해 염해토양의 특성을 보일 수 있으므로, 투여량 조절을 통해 농작물 위해를 사전 제어할 필요가 있다. In this study, we investigated the feasibility of calcium sulfate fertilizer as a stabilizing agent for As and Hg contaminated farmland soil and its stabilization characteristics in 3 different physical forms (particulate, powder, and solution) through a pot experiment including 34 days of lettuce growth. As and Hg contents of the lettuce grown in the stabilized soils were decreased by at least 70%. However the lettuce yield of the soil stabilized with the solution agent was decreased by 46% due to the overabundance of the nutrients from the solution agent. Thus, if a solution-type agent is planned for agricultural farmland soil stabilization, additional tests for optimal dosage are needed to preserve vegetation growth. In Hg fractionation, a lower concentration of elemental fractions and a higher concentration of residual/sulfide fractions were identified in the soils stabilized with the solution, powder, and pariculate agents in descending order while there were no significant changes in As fractionation. Overall results suggest that calcium sulfate fertilizer can be used as a stabilizing agent, and a solution-type agent could be used when the operation of heavy machinery for the soil stabilization process is impossible.

      • KCI등재

        비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가

        고일하,김정은,박소영,최유림,김동수,문덕현,장윤영,Koh, Il-Ha,Kim, Jung-Eun,Park, So-Young,Choi, Yu-Lim,Kim, Dong-Su,Moon, Deok Hyun,Chang, Yoon-Young 한국지하수토양환경학회 2022 지하수토양환경 Vol.27 No.6

        This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.

      • KCI등재

        광산지역 비소오염 경사 농경지 토양의 안정화 및 유실 저감을 위한 석탄광산배수슬러지의 적용성 평가

        고일하,권요셉,정문호,지원현,Koh, Il-Ha,Kwon, Yo Seb,Jeong, Mun-Ho,Ji, Won Hyun 한국지하수토양환경학회 2021 지하수토양환경 Vol.26 No.6

        Soil aggregation begins with flocculation of clay particles triggered by interfacial reactions of polyvalent cation such as Ca<sup>2+</sup> and Fe<sup>3+</sup>, and they are also known as important elements to control the mobility of arsenic in soil environment. The objective of this study was to investigate the feasibility of CMDS (coal mine drainage sludge) for soil loss reduction and stabilization of arsenic-contaminated soil in a 37% sloped farmland under rainfall simulation. The amount of soil loss decreased by 43% when CMDS was applied, and this result was not significantly different from the case of limestone application, which yielded 46% decrease of soil loss. However, the relative amount of dispersed clay particles in the sediment CMDS-applied soil was 10% lower than that of limestone-applied soil, suggesting CMDS is more effective than limestone in inducing soil aggregation. The concentrations of bioavailable arsenic in CMDS amended soil decreased by 46%~78%, which was lower than the amount in limestone amended soil. Therefore, CMDS can be used as an effective amendment material to reduce soil loss and stabilize arsenic in sloped farmland areas.

      • KCI등재

        광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가

        고일하,권요셉,문덕현,고주인,지원현,Koh, Il-Ha,Kwon, Yo Seb,Moon, Deok Hyun,Ko, Ju In,Ji, Won Hyun 한국지하수토양환경학회 2020 지하수토양환경 Vol.25 No.1

        This study assessed the feasibility of coal mine drainage sludge (CMDS) as a stabilizing agent for mercury contaminated soil through pot experiments and batch tests. In the pot experiments with 43 days of lettuce growth, the bioavailability of mercury in the amended soil and mercury content of the lettuce were decreased by 46% and 50%, respectively. These results were similar to those of the soil amended with the sulfide compound (FeS) generally used for mercury stabilization. Thus, CMDS could be an attractive mercury stabilizer in terms of industrial by-product recycling. Batch tests were conducted to examine mercury fractionation including reactions between the soil and acetic acid. The result showed that some elemental fraction changed to strongly bounded fraction rather than residual (HgS) fraction. This made it possible to conclude that mercury adsorption on oxides in CMDS was the major mechanism of stabilization.

      • KCI등재

        석회석과 제강슬래그를 이용하여 안정화한 담수된 논토양의 비소 및 중금속의 거동변화

        고일하,김의영,지원현,윤대근,장윤영,Koh, Il-Ha,Kim, Eui-Young,Ji, Won Hyun,Yoon, Dae-Geun,Chang, Yoon-Young 한국지하수토양환경학회 2015 지하수토양환경 Vol.20 No.1

        The characteristics of As and heavy metals depend on the oxidation/reduction condition of the soil environment. The most heavy metals are immobilized by the reduction condition whereas As, Fe and Mn become more soluble. Therefore this study estimated the stabilization efficiency of the agricultural paddy soil in the vicinity of the abandoned mine using a flooded column test including analysis of the soil solution, contaminants fractionation and rice grain. Limestone and steelmaking slag were used as amendments for stabilization of the contaminated soil. In an analysis of the soil solution, the mobile characteristics of Fe and Mn, which were used as electron acceptors of the microorganisms, were controlled by increasing the pH by adding alkali amendments. This means that the contaminants combined with Fe and Mn can be stable under flooded reduction condition. However, the concentrations of cationic heavy metals (Cd, Pb, and Zn) were also decreased without amendments because the carbonates produced from microbial respiration increased the pH of the soil solution. In the amended soil, the specific sorbed fraction of As and carbonates fraction of heavy metals were increased when compared to the control soil at the end of the column test. Especially in heavy metals, the increase of carbonates fraction seems to be influenced by alkali amendments rather than microbial respiration. Because of the stabilization effect in the flooded paddy soil, the contents of As and Zn in rice grain from amended soil were lower than that of the control soil. But additional research is needed because of the relatively higher Pb content identified in the rice grain from the amended.

      • KCI등재

        논토양 배수조건에 따른 비소 및 중금속의 용출 및 벼 전이특성

        고일하,김정은,김지숙,지원현 한국지하수토양환경학회 2017 지하수토양환경 Vol.22 No.6

        A pot experiment was conducted to investigate the transfer of As and cationic heavy metals (Fe, Mn, Zn, Cd and Pb) from soil to rice plant in soil condition with submerged and drained. During the ninety-day monitoring period for soil solution, solubility of reducible elements such as As, Fe and Mn in submerged condition were higher than that of Zn. On the contrary, concentration of Zn in drained condition was higher than that of reducible elements. The concentration of As, Cd, Pb and Zn in rice plant (root, stem, leaf and grain) showed similar pattern with soil solution. The As concentration in each part of rice plant, which cultivated in drained condition, measured 56%~94% lower than those in submerged condition. However, the contents of cationic heavy metals (Cd, Pb and Zn) were represented the opposite result with As. These results are due to mobility of As and cationic heavy metals under different soil drainage conditions which represent oxidation and reduction. Thus soil drainage control can be used as acceptable passive treatment methods to reduce transfer of inorganic contaminants from soil to rice plant. However more detailed examination on soil condition conversion is needed, because yield of rice was decreased when it cultivated in drained condition only. It also needed when soil is contaminated by As and cationic heavy metal because single drainage condition cannot reduce transfer of both kinds of contaminants all.

      • KCI등재

        인공강우 모사를 통한 석회/유기퇴비 혼합물의 경사지 토양유실 억제효과

        고일하,노훈,황원재,서형기,지원현,Koh, Il-Ha,Roh, Hoon,Hwang, Wonjae,Seo, Hyunggi,Ji, Won Hyun 한국지하수토양환경학회 2018 지하수토양환경 Vol.23 No.3

        In a previous study, the feasibility of four materials (bentonite, steelmaking slag, lime and organic compost) to induce soil aggregate formation was assessed and the mixtures of organic compost and lime were chosen as most effective amendments in terms of cost benefit. This work is a subsequent study to evaluate the effectiveness of those amendments in reducing soil loss in $15^{\circ}$ sloped agricultural area by using rainfall simulation test. Three different soils were treated with two conditions of organic compost/lime mixtures (2% + 2%, 3% + 1%, w/w). In the amended soils, soil fertility was increased due to the increase of CEC, T-N, and T-P. During the rainfall simulation, suspended solid in run-off water from amended soil were reduced by 43% ~ 78%. When the content of organic compost was higher than that of lime, reduction of soil loss was also increased by 67% ~ 78%. Sediment discharge was also decreased by 72% ~ 96% in the amended soil. Similar to the suspended solid analysis, higher organic compost content led to more reduction of soil discharging, which implies organic compost is more effective than lime in reducing soil loss. The overall result suggests that the mixtures of organic compost and lime could be used as amendment materials to reduce soil loss in sloped farmland.

      • KCI등재

        유기퇴비를 이용한 급경사 농경지 토양유실 저감

        고일하,강희천,권요셉,유찬,정문호,지원현,Koh, Il-Ha,Kang, Hui-Cheon,Kwon, Yo Seb,Yu, Chan,Jeong, Mun-Ho,Ji, Won Hyun 한국지하수토양환경학회 2020 지하수토양환경 Vol.25 No.4

        The objective of this study was to investigate the feasibility of organic compost for reducing soil loss in 25% sloped farm land. For the study, laboratory and field experiment were performed. After nine weeks monitoring in pot test, hardness of the amended soil with organic compost (1%~3%, w/w) showed two times higher than the control soil. Furthermore, soil loss of that was decreased by 95% under rainfall simulation test. From the result of laboratory experiment, organic compost with 2% (w/w) was applied for field experimental plot. After six month from April to September, the amount of soil loss became 67% of the initial, and the growth of natural vegetation was not hampered. Therefore, organic compost can be used as amendment materials to reduce soil loss in sloped farmland.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼