RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        GROUP SECRET KEY GENERATION FOR 5G Networks

        ( Ali M. Allam ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.8

        Key establishment method based on channel reciprocity for time division duplex (TDD) system has earned a vital consideration in the majority of recent research. While most of the cellular systems rely on frequency division duplex (FDD) systems, especially the 5G network, which is not characterized by the channel reciprocity feature. This paper realizes the generation of a group secret key for multi-terminals communicated through a wireless network in FDD mode, by utilizing the nature of the physical layer for the wireless links between them. I consider a new group key generation approach, which using bitwise XOR with a modified pairwise secret key generation approach not based on the channel reciprocity feature. Precisely, this multi-node secret key agreement technique designed for three wireless network topologies: 1) the triangle topology, 2) the multi-terminal star topology, and 3) the multi-node chain topology. Three multi-node secret key agreement protocols suggest for these wireless communication topologies in FDD mode, respectively. I determine the upper bound for the generation rate of the secret key shared among multi-node, for the three multi-terminals topologies, and give numerical cases to expose the achievement of my offered technique.

      • SCIESCOPUSKCI등재

        Privacy-Preserving NFC-Based Authentication Protocol for Mobile Payment System

        ( Ali M. Allam ) 한국인터넷정보학회 2023 KSII Transactions on Internet and Information Syst Vol.17 No.5

        One of the fastest-growing mobile services accessible today is mobile payments. For the safety of this service, the Near Field Communication (NFC) technology is used. However, NFC standard protocol has prioritized transmission rate over authentication feature due to the proximity of communicated devices. Unfortunately, an adversary can exploit this vulnerability with an antenna that can eavesdrop or alter the exchanged messages between NFC-enabled devices. Many researchers have proposed authentication methods for NFC connections to mitigate this challenge. However, the security and privacy of payment transactions remain insufficient. We offer a privacy-preserving, anonymity-based, safe, and efficient authentication protocol to protect users from tracking and replay attacks to guarantee secure transactions. To improve transaction security and, more importantly, to make our protocol lightweight while ensuring privacy, the proposed protocol employs a secure offline session key generation mechanism. Formal security verification is performed to assess the proposed protocol's security strength. When comparing the performance of current protocols, the suggested protocol outperforms the others.

      • KCI등재

        Enhanced Onion Resistance against Stemphylium Leaf Blight Disease, Caused byStemphylium vesicarium, by Di-potassium Phosphate and Benzothiadiazole Treatments

        Abo-Elyousr A. M. Kamal,Hussein M. A. Mohamed,Allam A. D. Aly,Hassan A. H. Mohamed 한국식물병리학회 2008 Plant Pathology Journal Vol.24 No.2

        In this study, we investigated the induced defense response and protective effects against Stemphylium vesicarium by application of benzothiadiazole (Bion®) and di-potassium phosphate salt (K2HPO4) to onion. Onion leaves were sprayed with Bion® and K2HPO4, then inoculated 2 days later with a virulent strain of S. vesicarium under greenhouse conditions. Disease severity and activities of peroxidase (PO), polyphenoloxidase, phenylalanine ammonia-lyase (PAL) and phenol contents were evaluated in the treated leaf tissues. Reduction in the disease severity was observed in plants treated with Bion® and K2HPO4. Onion plants treated with Bion® and K2HPO4 and inoculated with the pathogen showed significantly higher PAL activity, PO activity, and phenol contents than inoculated water-treated plants 2 days after the treatment. In conclusion, the results of this study provide evidence that application of simple non-toxic chemical solutions as di-potassium phosphate and Bion® can control Stemphylium leaf blight of onion.

      • SCIEKCI등재

        Enhanced Onion Resistance against Stemphylium Leaf Blight Disease, Caused by Stemphylium vesicarium, by Di-potassium Phosphate and Benzothiadiazole Treatments

        Kamal, Abo-Elyousr A.M.,Mohamed, Hussein M.A.,Aly, Allam A.D.,Mohamed, Hassan A.H. The Korean Society of Plant Pathology 2008 Plant Pathology Journal Vol.24 No.2

        In this study, we investigated the induced defense response and protective effects against Stemphylium vesicarium by application of benzothiadiazole ($Bion^{(R)}$) and di-potassium phosphate salt $(K_2HPO_4)$ to onion. Onion leaves were sprayed with $Bion^{(R)}$ and $K_2HPO_4$, then inoculated 2 days later with a virulent strain of S. vesicarium under greenhouse conditions. Disease severity and activities of peroxidase (PO), polyphenoloxidase, phenylalanine ammonia-lyase (PAL) and phenol contents were evaluated in the treated leaf tissues. Reduction in the disease severity was observed in plants treated with $Bion^{(R)}$ and $K_2HPO_4$. Onion plants treated with $Bion^{(R)}$ and $K_2HPO_4$ and inoculated with the pathogen showed significantly higher PAL activity, PO activity, and phenol contents than inoculated water-treated plants 2 days after the treatment. In conclusion, the results of this study provide evidence that application of simple non-toxic chemical solutions as di-potassium phosphate and $Bion^{(R)}$ can control Stemphylium leaf blight of onion.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼