RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Angelica sinensis Supercritical Fluid CO2 Extract Attenuates D-Galactose-Induced Liver and Kidney Impairment in Mice by Suppressing Oxidative Stress and Inflammation

        Zhi-Zhun Mo,Zhi-Xiu Lin,ZiRen Su,Lin Zheng,Hui-Lin Li,JianHui Xie,Yan-Fang Xian,Tie-Gang Yi,Shui-Qing Huang,Jian-Ping Chen 한국식품영양과학회 2018 Journal of medicinal food Vol.21 No.9

        Angelica sinensis (AS, Danggui in Chinese) is an important herbal component of various traditional formulae for the management of asthenia and its tonic effects. Although AS has been shown to ameliorate cognitive damage and nerve toxicity in D-galactose (D-gal)-elicited senescent mice brain, its effects on liver and kidney injury have not yet been explored. In this work, mice were subjected to hypodermic injection with D-gal (200 mg/kg) and orally gavaged with AS (20, 40, or 80 mg/kg) once a day for 8 successive weeks. Results revealed that AS significantly improved liver and kidney function as assessed by organ index and functional parameters. In addition, AS pretreatment effectively ameliorated the histological deterioration. AS attenuated the MDA level and markedly enhanced the activities and gene expressions of antioxidative enzymes, namely Cu, Zn-SOD, CAT, and GPx. Furthermore, AS markedly inhibited the D-gal-mediated increment of expressions of inflammatory cytokines iNOS, COX-2, IκBα, p-IκBα, and p65 and promoted the IκBα expression level in both hepatic and renal tissues. In sum, AS pretreatment could effectively guard the liver and kidney of mice from D-gal-induced injury, and the underlying mechanism was deemed to be intimately related to attenuating oxidative response and inflammatory stress.

      • KCI등재

        Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale

        DanDan Luo,Chao Qu,ZhenBiao Zhang,JianHui Xie,LieQiang Xu,HongMei Yang,CaiLan Li,GuoSheng Lin,HongFeng Wang,ZiRen Su 한국식품영양과학회 2017 Journal of medicinal food Vol.20 No.2

        Constipation is a common disorder that is a significant source of morbidity among people around the world ranging from 2% to 28%. Dendrobium officinale Kimura et Migo is a traditional herbal medicine and health food used for tonicity of the stomach and promotion of body fluid production in China. This study aimed to prepare the ultrafine powder of Dendrobium officinale (UDO) and investigate its laxative effect and potential mechanism in mice with diphenoxylate-induced constipation. Results indicated that the mean diameter (d50) of UDO obtained by ball milling was 6.56 lm. UDO (62.5, 125, and 250 mg/kg, p.o.) could significantly enhance the gastrointestinal transit ratio and promote fecal output. Moreover, UDO treatment resulted in significant increases in the serum levels of acetylcholinesterase (AChE), gastrin (Gas), motilin (MTL), and substance P (SP), and obviously decreased serum contents of somatostatin (SS). Taken together, UDO, which can be easily obtained through milling to a satisfactory particle size, exhibited obvious laxative effect in diphenoxylate-induced constipated mice, and the mechanism might be associated with elevated levels of AChE, Gas, MTL, SP, and reduced production of SS. UDO has the potential for further development into an alternative effective diet therapy for constipation.

      • SCOPUSKCI등재

        Removal of antibiotics from wastewater and its problematic effects on microbial communities by bioelectrochemical Technology: Current knowledge and future perspectives

        Mahdi Hassan,Guangcan Zhu,Yong-ze LU,Ali Hamoud AL-Falahi,Yuan LU,Shan Huang,Ziren Wan 대한환경공학회 2021 Environmental Engineering Research Vol.26 No.1

        In this review, antibiotics are considered an emerging pollutant that has drawn worldwide attention in recent years. Therefore, the effective removal of antibiotic contaminants has become a hot issue in the field of environmental research. Most antibiotics applied to humans eventually enter municipal Wastewater Treatment Plants (WWTPs), because there are no appropriate commercially available pretreatment techniques. However, increasing anthropogenic activities, the high demand for animal-protein in developing countries as a nutritional alternative, and the extensive usage of antibiotics are mainly responsible for the persistence of antibiotic pollutants. One of the serious concerns regarding the presence of antibiotics in water and their potential role in exacerbating the emergence of antibiotics-resistance bacteria (ARB) and antibiotics-resistance genes (ARGs). In recent years, bioelectrochemical technologies are found promising for suppressing antibiotic contaminants through microbial metabolism and electrochemical redox reactions. Therefore, this review provides up-to-date insight research on bioelectrochemical systems (BESs), which improves the removal of the antibiotic in an efficient way. The focus of this review has been on the environmental sources of antibiotics, their health effects and possible degradation pathways, bacterial-antibiotics resistance mechanisms, and treatment of antibiotic-contained water using BES technology.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼