RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Graphene Decorated with Hierarchical CuS Nanoplates: Enhanced Photocatalytic Performance

        BIN ZENG,Wanfeng Liu,WUJUN ZENG,Can Jin 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2018 NANO Vol.13 No.3

        Graphene decorated with hierarchical CuS nanoplates (CuS NP-G) was synthesized using a microwave method to be used as a photocatalytic material. The incorporation of graphene into hierarchical CuS nanoplates was confirmed by structural, morphological and optical characterizations. The photocatalytic performance of the nanocomposite was evaluated. This study confirmed that the introduction of graphene was an effective way not only to improve the structural stability and service durability of the composite, but also to improve its solar photocatalytic activity by promoting the electron transfer and charge separation of hierarchical CuS nanoplates.

      • KCI등재

        Glutamic-oxaloacetic transaminase 1 regulates adipocyte differentiation by altering nicotinamide adenine dinucleotide phosphate content

        Yang Yang,Cheng Zhimin,Zhang Wanfeng,Hei Wei,Lu Chang,Cai Chunbo,Zhao Yan,Gao Pengfei,Guo Xiaohong,Cao Guoqing,Li Bugao 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.2

        Objective: This study was performed to examine whether the porcine glutamic-oxaloacetic transaminase 1 (GOT1) gene has important functions in regulating adipocyte differentiation. Methods: Porcine GOT1 knockout and overexpression vectors were constructed and transfected into the mouse adipogenic 3T3-L1 cells. Lipid droplets levels were measured after 8 days of differentiation. The mechanisms through which GOT1 participated in lipid deposition were examined by measuring the expression of malate dehydrogenase 1 (MDH1) and malic enzyme (ME1) and the cellular nicotinamide adenine dinucleotide phosphate (NADPH) content. Results: GOT1 knockout significantly decreased lipid deposition in the 3T3-L1 cells (p< 0.01), whereas GOT1 overexpression significantly increased lipid accumulation (p<0.01). At the same time, GOT1 knockout significantly decreased the NADPH content and the expression of MDH1 and ME1 in the 3T3-L1 cells. Overexpression of GOT1 significantly increased the NADPH content and the expression of MDH1 and ME1, suggesting that GOT1 regulated adipocyte differentiation by altering the NADPH content. Conclusion: The results preliminarily revealed the effector mechanisms of GOT1 in regulating adipose differentiation. Thus, a theoretical basis is provided for improving the quality of pork and studies on diseases associated with lipid metabolism. Objective: This study was performed to examine whether the porcine glutamic-oxaloacetic transaminase 1 (GOT1) gene has important functions in regulating adipocyte differentiation.Methods: Porcine GOT1 knockout and overexpression vectors were constructed and transfected into the mouse adipogenic 3T3-L1 cells. Lipid droplets levels were measured after 8 days of differentiation. The mechanisms through which GOT1 participated in lipid deposition were examined by measuring the expression of malate dehydrogenase 1 (MDH1) and malic enzyme (ME1) and the cellular nicotinamide adenine dinucleotide phosphate (NADPH) content.Results: GOT1 knockout significantly decreased lipid deposition in the 3T3-L1 cells (p<0.01), whereas GOT1 overexpression significantly increased lipid accumulation (p<0.01). At the same time, GOT1 knockout significantly decreased the NADPH content and the expression of MDH1 and ME1 in the 3T3-L1 cells. Overexpression of GOT1 significantly increased the NADPH content and the expression of MDH1 and ME1, suggesting that GOT1 regulated adipocyte differentiation by altering the NADPH content.Conclusion: The results preliminarily revealed the effector mechanisms of GOT1 in regulating adipose differentiation. Thus, a theoretical basis is provided for improving the quality of pork and studies on diseases associated with lipid metabolism.

      • SCIESCOPUSKCI등재

        Novel splice isoforms of pig myoneurin and their diverse mRNA expression patterns

        Guo, Xiaohong,Li, Meng,Gao, Pengfei,Cao, Guoqing,Cheng, Zhimin,Zhang, Wanfeng,Liu, Jianfeng,Liu, Xiaojun,Li, Bugao Asian Australasian Association of Animal Productio 2018 Animal Bioscience Vol.31 No.10

        Objective: The aim of this study was to clone alternative splicing isoforms of pig myoneurin (MYNN), predict the structure and function of coding protein, and study temporal and spatial expression characteristics of each transcript. Methods: Alternative splice isoforms of MYNN were identified using RNA sequencing (RNA-seq) and cloning techniques. Quantitative real-time polymerase chain reaction (qPCR) was employed to detect expression patterns in 11 tissues of Large White (LW) and Mashen (MS) pigs, and to study developmental expression patterns in cerebellum (CE), stomach (ST), and longissimus dorsi (LD). Results: The results showed that MYNN had two alternatively spliced isoforms, MYNN-1 (GenBank accession number: KY470829) and MYNN-2 (GenBank accession number: KY670835). MYNN-1 coding sequence (CDS) is composed of 1,830 bp encoding 609 AA, whereas MYNN-2 CDS is composed of 1,746 bp encoding 581 AA. MYNN-2 was 84 bp less than MYNN-1 and lacked the sixth exon. MYNN-2 was found to have one $C_2H_2$ type zinc finger protein domain less than MYNN-1. Two variants were ubiquitously expressed in all pig tissues, and there were significant differences in expression of different tissues (p<0.05; p<0.01). The expression of MYNN-1 was significantly higher than that of MYNN-2 in almost tissues (p<0.05; p<0.01), which testified that MYNN-1 is the main variant. The expression of two isoforms decreased gradually with increase of age in ST and CE of MS pig, whereas increased gradually in LW pig. In LD, the expression of two isoforms increased first and then decreased with increase of age in MS pig, and decreased gradually in LW pig. Conclusion: Two transcripts of pig MYNN were successfully cloned and MYNN-1 was main variant. MYNN was highly expressed in ST, CE, and LD, and their expression was regular. We speculated that MYNN plays important roles in digestion/absorption and skeletal muscle growth, whereas the specific mechanisms require further elucidation.

      • KCI등재

        Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig

        Pengfei Gao,Zhimin Cheng,Meng Li,Ningfang Zhang,Baoyu Le,Wanfeng Zhang,Pengkang Song,Xiaohong Guo,Bugao Li,Guoqing Cao 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.8

        Objective: The aim of this study was to select the candidate genes affecting meat quality and preliminarily explore the related molecular mechanisms in the Mashen pig. Methods: The present study explored genetic factors affecting meat quality in the Mashen pig using RNA sequencing (RNA-Seq). We sequenced the transcriptomes of 180-day-old Mashen and Large White pigs using longissimus dorsi to select differentially expressed genes (DEGs). Results: The results indicated that a total of 425 genes were differentially expressed between Mashen and Large White pigs. A gene ontology enrichment analysis revealed that DEGs were mainly enriched for biological processes associated with metabolism and muscle development, while a Kyoto encyclopedia of genes and genomes analysis showed that DEGs mainly participated in signaling pathways associated with amino acid metabolism, fatty acid metabolism, and skeletal muscle differentiation. A MCODE analysis of the protein-protein interaction network indicated that the four identified subsets of genes were mainly associated with translational initiation, skeletal muscle differentiation, amino acid metabolism, and oxidative phosphorylation pathways. Conclusion: Based on the analysis results, we selected glutamic-oxaloacetic transaminase 1, malate dehydrogenase 1, pyruvate dehydrogenase 1, pyruvate dehydrogenase kinase 4, and activator protein-1 as candidate genes affecting meat quality in pigs. A discussion of the related molecular mechanisms is provided to offer a theoretical basis for future studies on the improvement of meat quality in pigs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼