RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

        Uyangaa, Erdenebileg,Patil, Ajit Mahadev,Eo, Seong Kug The Korean Association of Immunobiologists 2014 Immune Network Vol.14 No.4

        Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, $CD4^+$ Th1 T cells producing IFN-${\gamma}$ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.

      • KCI등재

        Identification and Characterization of a Novel β-Galactosidase from Victivallis vadensis ATCC BAA-548, an Anaerobic Fecal Bacterium

        Uyangaa Temuujin,지원재,박재선,장용근,송재양,홍순광 한국미생물학회 2012 The journal of microbiology Vol.50 No.6

        Victivallis vadensis ATCC BAA-548 is a Gram-negative, anaerobic bacterium that was isolated from a human fecal sample. From the genomic sequence of V. vadensis, one gene was found to encode agarase; however, its enzymatic properties have never been characterized. The gene encoding the putative agarase (NCBI reference number ZP_01923925) was cloned by PCR and expressed in E. coli Rosetta-gami by using the inducible T7 promoter of pET28a(+). The expressed protein with a 6×His tag at the N-terminus was named His6-VadG925 and purified as a soluble protein by Ni2+-NTA agarose affinity column chromatography. The purification of the enzyme was 26.8-fold, with a yield of 73.2% and a specific activity of 1.02 U/mg of protein. The purified His6-VadG925 produced a single band with an approximate MW of 155 kDa, which is consistent with the calculated value (154,660 Da) including the 6×His tag. Although VadG925 and many of its homologs were annotated as agarases, it did not hydrolyze agarose. Instead, purified His6-VadG925 hydrolyzed an artificial chromogenic substrate, p-nitrophenyl-β-D-galactopyranoside, but not p-nitrophenyl-α-D-galactopyranoside. The optimum pH and temperature for this β-galactosidase activity were pH 7.0 and 40°C, respectively. The Km and Vmax of His6-VadG925 towards p-nitrophenyl-β-D-galactopyranoside were 1.69 mg/ml (0.0056 M) and 30.3 U/mg, respectively. His6-VadG925 efficiently hydrolyzed lactose into glucose and galactose, which was demonstrated by TLC and mass spectroscopy. These results clearly demonstrated that VadG925 is a novel β-galactosidase that can hydrolyze lactose, which is unusual because of its low homology to validated β-galactosidases.

      • KCI등재

        Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

        ( Uyangaa Temuujin ),( Jae Seon Park ),( Soon Kwang Hong ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.9

        The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40°C and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl α Dgalactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.

      • SCOPUSKCI등재

        Anti-herpes Activity of Vinegar-processed Daphne genkwa Flos Via Enhancement of Natural Killer Cell Activity

        Uyangaa, Erdenebileg,Choi, Jin Young,Ryu, Hyung Won,Oh, Sei-Ryang,Eo, Seong Kug The Korean Association of Immunobiologists 2015 Immune Network Vol.15 No.2

        Herpes simplex virus (HSV) is a common causative agent of genital ulceration and can lead to subsequent neurological disease in some cases. Here, using a genital infection model, we tested the efficacy of vinegar-processed flos of Daphne genkwa (vp-genkwa) to modulate vaginal inflammation caused by HSV-1 infection. Our data revealed that treatment with optimal doses of vp-genkwa after, but not before, HSV-1 infection provided enhanced resistance against HSV-1 infection, as corroborated by reduced mortality and clinical signs. Consistent with these results, treatment with vp-genkwa after HSV-1 infection reduced viral replication in the vaginal tract. Furthermore, somewhat intriguingly, treatment of vp-genkwa after HSV-1 infection increased the frequency and absolute number of $CD3^-NK1.1^+NKp46^+$ natural killer (NK) cells producing interferon (IFN)-${\gamma}$ and granyzme B, which indicates that vp-genkwa treatment induces the activation of NK cells. Supportively, secreted IFN-${\gamma}$ was detected at an increased level in vaginal lavages of mice treated with vp-genkwa after HSV-1 infection. These results indicate that enhanced resistance to HSV-1 infection by treatment with vp-genkwa is associated with NK cell activation. Therefore, our data provide a valuable insight into the use of vp-genkwa to control clinical severity in HSV infection through NK cell activation.

      • Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6C <sup>hi</sup> Monocytes and NK Cells via CCL2-CCL3 Cascade

        Uyangaa, Erdenebileg,Kim, Jin Hyoung,Patil, Ajit Mahadev,Choi, Jin Young,Kim, Seong Bum,Eo, Seong Kug Public Library of Science 2015 PLoS pathogens Vol.11 No.11

        <▼1><P>Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6C<SUP>hi</SUP> monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6C<SUP>lo</SUP> monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6C<SUP>hi</SUP> monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6C<SUP>hi</SUP> monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6G<SUP>hi</SUP> neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11b<SUP>hi</SUP>F4/80<SUP>hi</SUP> macrophages and CD11c<SUP>hi</SUP>EpCAM<SUP>+</SUP> dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6C<SUP>hi</SUP> monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6C<SUP>hi</SUP> monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.</P></▼1><▼2><P><B>Author Summary</B></P><P>Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide with lifelong latent infection after peripheral replication in mucosal tissues. Furthermore, acquisition of human immunodeficiency virus (HIV) is increased in HSV-infected individuals, underscoring the contribution of this virus in facilitating increased susceptibility to other microbial pathogens. Therefore, it is imperative to characterize the host defense to HSV infection and identify key components that regulate virus resistance, in order to devise therapeutic strategy. Although type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is considered a key player to control replication and CNS-invasion of HSV, the regulators and cell population that are affected by IFN-I to establish the orchestrated environment of innate cells in HSV-infected tissues are largely unknown. In the present study, we demonstrate that IFN-I signal governs the sequential recruitment of Ly-6C<SUP>hi</SUP> monocytes and then NK cells into mucosal tissues, depending on CCL2-CCL3 cascade mediated by HSC-derived leukocytes and epithelial resident cells, respectively. Also, tissue resident CD11b<SUP>hi</SUP>F4/80<SUP>hi</SUP> macrophages and CD11c<SUP>hi</SUP>EpCAM<SUP>+</SUP> dendritic cells were involved in producing the initial CCL2 for migration-based self-amplification of rapidly infiltrated Ly-6C<SUP>hi</SUP> monocytes through stimulation by IFN-I produced from infected epithelial cells. This study deciphers detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6C<SUP>hi</SUP> monocytes and NK cells through CCL2-CCL3 cascade.</P></▼2>

      • SCOPUSKCI등재

        Glutamine and Leucine Provide Enhanced Protective Immunity Against Mucosal Infection with Herpes Simplex Virus Type 1

        Uyangaa, Erdenebileg,Lee, Hern-Ku,Eo, Seong Kug The Korean Association of Immunobiologists 2012 Immune Network Vol.12 No.5

        Besides their role as building blocks of protein, there are growing evidences that some amino acids have roles in regulating key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. Here, we evaluated the modulatory functions of several amino acids in protective immunity against mucosal infection of herpes simplex virus type 1 (HSV-1). We found that glutamine (Gln) and leucine (Leu) showed enhanced protective immunity to HSV-1 mucosal infection when two administration of Gln and single administration of Leu per day, but not when administered in combinations. Ameliorated clinical signs of HSV-1 challenged mice by the intraperitoneal administration of Gln and Leu were closely associated with viral burden and IFN-${\gamma}$ production in the vaginal tract at 2 and 4 days post-infection. In addition, the enhanced production of vaginal IFN-${\gamma}$ appeared to be caused by NK and HSV-1 antigen-specific Th1-type CD4+ T cells recruited into vaginal tract of mice treated with Gln and Leu, which indicates that IFN-${\gamma}$, produced by NK and Th1-type CD4+ T cells, may be critical to control the outcome of diseases caused by HSV-1 mucosal infection. Collectively, our results indicate that intraperitoneal administration of Gln and Leu following HSV-1 mucosal infection could provide beneficial effects for the modulation of protective immunity, but dosage and frequency of administration should be carefully considered, because higher frequency and overdose of Gln and Leu, or their combined treatment, showed detrimental effects to protective immunity.

      • KCI등재

        Glutamine and Leucine Provide Enhanced Protective Immunity Against Mucosal Infection with Herpes Simplex Virus Type 1

        Erdenebileg Uyangaa,어성국,이헌구 대한면역학회 2012 Immune Network Vol.12 No.5

        Besides their role as building blocks of protein, there are growing evidences that some amino acids have roles in regulating key metabolic pathways that are necessary for maintenance,growth, reproduction, and immunity. Here, we evaluated the modulatory functions of several amino acids in protective immunity against mucosal infection of herpes simplex virus type 1 (HSV-1). We found that glutamine (Gln) and leucine (Leu) showed enhanced protective immunity to HSV-1mucosal infection when two administration of Gln and single administration of Leu per day, but not when administered in combinations. Ameliorated clinical signs of HSV-1 challenged mice by the intraperitoneal administration of Gln and Leu were closely associated with viral burden and IFN-γ production in the vaginal tract at 2 and 4 days post-infection. In addition, the enhanced production of vaginal IFN-γ appeared to be caused by NK and HSV-1 antigen-specific Th1-type CD4+ T cells recruited into vaginal tract of mice treated with Gln and Leu, which indicates that IFN-γ, produced by NK and Th1-type CD4+ T cells, may be critical to control the outcome of diseases caused by HSV-1 mucosal infection. Collectively, our results indicate that intraperitoneal administration of Gln and Leu following HSV-1 mucosal infection could provide beneficial effects for the modulation of protective immunity, but dosage and frequency of administration should be carefully considered, because higher frequency and overdose of Gln and Leu, or their combined treatment,showed detrimental effects to protective immunity. Besides their role as building blocks of protein, there are growing evidences that some amino acids have roles in regulating key metabolic pathways that are necessary for maintenance,growth, reproduction, and immunity. Here, we evaluated the modulatory functions of several amino acids in protective immunity against mucosal infection of herpes simplex virus type 1 (HSV-1). We found that glutamine (Gln) and leucine (Leu) showed enhanced protective immunity to HSV-1mucosal infection when two administration of Gln and single administration of Leu per day, but not when administered in combinations. Ameliorated clinical signs of HSV-1 challenged mice by the intraperitoneal administration of Gln and Leu were closely associated with viral burden and IFN-γ production in the vaginal tract at 2 and 4 days post-infection. In addition, the enhanced production of vaginal IFN-γ appeared to be caused by NK and HSV-1 antigen-specific Th1-type CD4+ T cells recruited into vaginal tract of mice treated with Gln and Leu, which indicates that IFN-γ, produced by NK and Th1-type CD4+ T cells, may be critical to control the outcome of diseases caused by HSV-1 mucosal infection. Collectively, our results indicate that intraperitoneal administration of Gln and Leu following HSV-1 mucosal infection could provide beneficial effects for the modulation of protective immunity, but dosage and frequency of administration should be carefully considered, because higher frequency and overdose of Gln and Leu, or their combined treatment,showed detrimental effects to protective immunity.

      • KCI등재

        Anti-herpes Activity of Vinegar-processed Daphne genkwa Flos Via Enhancement of Natural Killer Cell Activity

        Erdenebileg Uyangaa,최진영,류형원,오세량,어성국 대한면역학회 2015 Immune Network Vol.15 No.2

        Herpes simplex virus (HSV) is a common causative agent of genital ulceration and can lead to subsequent neurological disease in some cases. Here, using a genital infection model, we tested the efficacy of vinegar-processed flos of Daphne genkwa (vp-genkwa) to modulate vaginal inflammation caused by HSV-1 infection. Our data revealed that treatment with optimal doses of vp-genkwa after, but not before, HSV-1 infection provided enhanced resistance against HSV-1 infection, as corroborated by reduced mortality and clinical signs. Consistent with these results, treatment with vp-genkwa after HSV-1 infection reduced viral replication in the vaginal tract. Furthermore, somewhat intriguingly, treatment of vp-genkwa after HSV-1 infection increased the frequency and absolute number of CD3−NK1.1+NKp46+ natural killer (NK) cells producing interferon (IFN)-γ and granyzme B, which indicates that vp-genkwa treatment induces the activation of NK cells. Supportively, secreted IFN-γ was detected at an increased level in vaginal lavages of mice treated with vp-genkwa after HSV-1 infection. These results indicate that enhanced resistance to HSV-1 infection by treatment with vp-genkwa is associated with NK cell activation. Therefore, our data provide a valuable insight into the use of vp-genkwa to control clinical severity in HSV infection through NK cell activation.

      • KCI등재

        Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

        Erdenebileg Uyangaa,Ajit Mahadev Patil,어승국 대한면역학회 2014 Immune Network Vol.14 No.4

        Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4+ Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼