RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Correlation between Component Fatigue Performance and Results from Plane Bending Fatigue Tests on Notched Samples

        Bergmark Anders,Dizdar Senad,Bengtsson Sven,Luk Sydney 한국분말야금학회 2006 한국분말야금학회 학술대회논문집 Vol.2006 No.1

        A comparative study is made on root bending fatigue performance of spur gears and plane bending fatigue performance of notched test bars. R = 0 root bending fatigue tests are made on small spur gears with critical root radius 1.0 mm. The results are compared to plane bending fatigue tests of 0.9 mm radius notched specimens. Results are presented for tests on 4%Ni/2%Cu/1.5%Mo prealloyed PM steel with addition of about 0.6% graphite. Predicted values from the test bars coincide well with the results obtained from the gear root fatigue tests.

      • Thermo-mechanical analysis of reinforced concrete slab using different fire models

        Suljevic, Samir,Medic, Senad,Hrasnica, Mustafa Techno-Press 2020 Coupled systems mechanics Vol.9 No.2

        Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

      • KCI등재

        Sliding Manifold Design for Higher-order Sliding Mode Control of Linear Systems

        Boban Veselic,Cedomir Milosavljevic,Branislava Drazenovic,Senad Huseinbegovic 제어·로봇·시스템학회 2021 International Journal of Control, Automation, and Vol.19 No.8

        The paper considers sliding manifold design for higher-order sliding mode (HOSM) in linear systems. In this case, the sliding manifold must meet two requirements: to achieve the desired dynamics in HOSM and to provide the appropriate relative degree of the sliding variable depending on the SM order. It is shown that in the case of single-input systems, a unique sliding manifold can be determined that satisfies these two requirements, whereas in multi-input case, such a manifold exists only in systems satisfying specific structural constraints. Theoreticallyobtained results are validated through numerical examples and illustrated by digital simulations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼