RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • On the effect of carbon nanotubes on properties of liquid crystals

        Schymura, Stefan,Scalia, Giusy Royal Society 2013 Philosophical transactions. Series A, Mathematical Vol.371 No.1988

        <P>Liquid crystals (LCs), with their fluidity and self-organization, are attractive hosts for the dispersion and manipulation of macro- and nanoparticles, allowing the realization of their ordered assemblies. In addition, new functional materials can be created owing to the particle properties. Among the nanoparticles, carbon nanotubes (CNTs) stand out for their exceptional electrical, thermal and mechanical properties. While LCs can be used for manipulating CNTs, the nanotube properties are attractive also for influencing and tuning LC properties. In this paper, we discuss different aspects of the CNT–LC combination, briefly introducing their dispersion and interaction and then, more extensively, evaluating the CNT effect on selected properties of LCs relevant to display-related applications. We show that some previously reported improvements cannot be considered an intrinsic feature of CNT-doped LCs. In addition, we are also able to follow locally the Frederiks transition of CNT-doped LCs by Raman spectroscopy, revealing the direct effect of bundles of CNTs on LC reorientation.</P>

      • KCI등재SCIESCOPUS

        A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology

        Lagerwall, J.P.F.,Scalia, G. Elsevier 2012 CURRENT APPLIED PHYSICS Vol.12 No.6

        Liquid crystals constitute a fascinating class of soft condensed matter characterized by the counterintuitive combination of fluidity and long-range order. Today they are best known for their exceptionally successful application in flat panel displays, but they actually exhibit a plethora of unique and attractive properties that offer tremendous potential for fundamental science as well as innovative applications well beyond the realm of displays. Today this full breadth of the liquid crystalline state of matter is becoming increasingly recognized and numerous new and exciting lines of research are being opened up. We review this exciting development, focusing primarily on the physics aspects of the new research thrusts, in which liquid crystals - thermotropic as well as lyotropic - often meet other types of soft matter, such as polymers and colloidal nano- or microparticle dispersions. Because the field is of large interest also for researchers without a liquid crystal background we begin with a concise introduction to the liquid crystalline state of matter and the key concepts of the research field. We then discuss a selection of promising new directions, starting with liquid crystals for organic electronics, followed by nanotemplating and nanoparticle organization using liquid crystals, liquid crystal colloids (where the liquid crystal can constitute either the continuous phase or the disperse phase, as droplets or shells) and their potential in e.g. photonics and metamaterials, liquid crystal-functionalized polymer fibers, liquid crystal elastomer actuators, ending with a brief overview of activities focusing on liquid crystals in biology, food science and pharmacology.

      • KCI등재

        A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology

        Jan Lagerwall,Giusy Scalia 한국물리학회 2012 Current Applied Physics Vol.12 No.6

        Liquid crystals constitute a fascinating class of soft condensed matter characterized by the counterintuitive combination of fluidity and long-range order. Today they are best known for their exceptionally successful application in flat panel displays, but they actually exhibit a plethora of unique and attractive properties that offer tremendous potential for fundamental science as well as innovative applications well beyond the realm of displays. Today this full breadth of the liquid crystalline state of matter is becoming increasingly recognized and numerous new and exciting lines of research are being opened up. We review this exciting development, focusing primarily on the physics aspects of the new research thrusts, in which liquid crystals e thermotropic as well as lyotropic e often meet other types of soft matter, such as polymers and colloidal nano- or microparticle dispersions. Because the field is of large interest also for researchers without a liquid crystal background we begin with a concise introduction to the liquid crystalline state of matter and the key concepts of the research field. We then discuss a selection of promising new directions, starting with liquid crystals for organic electronics, followed by nanotemplating and nanoparticle organization using liquid crystals, liquid crystal colloids (where the liquid crystal can constitute either the continuous phase or the disperse phase, as droplets or shells) and their potential in e.g. photonics and metamaterials, liquid crystal-functionalized polymer fibers, liquid crystal elastomer actuators, ending with a brief overview of activities focusing on liquid crystals in biology, food science and pharmacology.

      • KCI등재

        Dynamic operation of liquid crystal cell with inherently nanogroovefeatured aligned carbon nanotube sheets

        Thuy Kieu Truong,박지현,MD Asiqur Rahman,Martin Urbanski,김은성,Giusy Scalia,서동석 한국물리학회 2019 Current Applied Physics Vol.19 No.2

        The use of a highly aligned carbon nanotube (CNT) sheet as a multifunctional constituent for liquid crystal (LC) displays and electro-optic LC applications is assessed. The CNT sheet can perform a dual function: one is an alignment layer for LCs, replacing the commonly used rubbed polyimide film, and the other is a transparent conductive layer, taking the place of indium tin oxide. The hydrophobic treatment improved the adhesion quality between aligned CNT bundles and the glass substrate, which helps to preserve the inherently aligned nanogroove morphology of transparent CNT sheets. The test LC display cells, comprising 4-cyano-4′-pentylbiphenyl molecules sandwiched between CNT-sheet-on-glass substrates, demonstrate the operation characteristics comparable to that of the conventional cell under temperature variation and ac electric field of 1 kHz. The results offer a possibility of deploying multifunctional CNT-sheet alignment layers in LC-based devices, especially in the future flexible display applications.

      • Electro‐optic switching with liquid crystal graphene

        Kim, Min Jae,Park, Ji Hyun,Yamamoto, Jun,Kim, Youn Sang,Scalia, Giusy WILEY‐VCH Verlag Berlin GmbH 2016 Physica Status Solidi. Rapid Research Letters Vol.10 No.5

        <P>Graphene oxide (GO) particles in aqueous dispersions can form liquid crystal (LC) phases at extremely low concentrations due to the extremely high aspect ratio of the flakes and noticeably, they possess an extremely large Kerr coefficient attractive for low power consumption electro‐optic devices. Reduced graphene does not easily form LC phases in water due to its hydrophobic nature but here we show that stable dispersions of reduced graphene oxide can be realized with surfactants and that they exhibit birefringence upon shearing as well as under application of electric fields. The performance of the system is largely superior to GO LC possessing longer time stability and drastically improved electro‐optic properties with an induced birefringence twice as large at the same field strength thanks to the almost recovery of graphene properties upon reduction. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)</P>

      • SCISCIESCOPUS

        Ultralong Ordered Nanowires from the Concerted Self-Assembly of Discotic Liquid Crystal and Solvent Molecules

        Park, Ji Hyun,Kim, Kyung Ho,Park, Yung Woo,Lagerwall, Jan P. F.,Scalia, Giusy American Chemical Society 2015 Langmuir Vol.31 No.34

        <P>The realization of long, aligned molecular wires is a great challenge, and a variety of approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules, a model system of molecules with flat and aromatic cores, can spontaneously form well-aligned, micrometer long, yet only tens of nanometers thick, nanowires on solid surfaces. We have investigated the formation mechanism of these wires using different solvents with selected characteristics, including chemical structure, boiling point, vapor pressure, and surface tension. When casting frorn toluene and benzene solutions, atomic force microscopy reveals that the discotics spontaneously form very long and thin wires, self-aligning along a common orientation. If instead dodecane or heptane are used, different and in general thicker structures are obtained. The chemical structure of the solvent appears to have a key role, coupling to the liquid crystal self-assembly by allowing solvent molecules to enter the ordered structure if their design matches the core of HATS molecules, thereby guiding the assembly. However, other aspects are also relevant in the assembly, including the nature of the substrate and the rate of solvent evaporation, and these can favor or interfere with the self-assembly into long structures. The use of solvents with aromatic structure is advantageous not only because it affects the geometry of the assembly, promoting long wire formation, but it is also compatible with good quality of the intermolecular order, as suggested by a high anisotropy of the Raman spectra of the nanowires formed from these solvents. Finally, the electrical properties of ordered systems show a clearly higher electrical conductivity compared to the disorganized aggregates.</P>

      • KCI등재SCIESCOPUS

        Dynamic operation of liquid crystal cell with inherently nanogroove-featured aligned carbon nanotube sheets

        Truong, Thuy-Kieu,Park, Ji Hyun,Rahman, MD Asiqur,Urbanski, Martin,Kim, Eun Sung,Scalia, Giusy,Suh, Dongseok ELSEVIER 2019 CURRENT APPLIED PHYSICS Vol.19 No.2

        <P><B>Abstract</B></P> <P>The use of a highly aligned carbon nanotube (CNT) sheet as a multifunctional constituent for liquid crystal (LC) displays and electro-optic LC applications is assessed. The CNT sheet can perform a dual function: one is an alignment layer for LCs, replacing the commonly used rubbed polyimide film, and the other is a transparent conductive layer, taking the place of indium tin oxide. The hydrophobic treatment improved the adhesion quality between aligned CNT bundles and the glass substrate, which helps to preserve the inherently aligned nanogroove morphology of transparent CNT sheets. The test LC display cells, comprising 4-cyano-4′-pentylbiphenyl molecules sandwiched between CNT-sheet-on-glass substrates, demonstrate the operation characteristics comparable to that of the conventional cell under temperature variation and ac electric field of 1 kHz. The results offer a possibility of deploying multifunctional CNT-sheet alignment layers in LC-based devices, especially in the future flexible display applications.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Dry-spun aligned carbon nanotube sheets as an electrode in the liquid crystal cell. </LI> <LI> CNT sheet plays a dual role: an alignment layer and a transparent conductor. </LI> <LI> Inherently-formed nanogrooves in the dry-spun CNT sheet good for LC alignment. </LI> <LI> A systematic assessment of CNT-sheet-electrode LC cell in a dynamic mode. </LI> <LI> Future possible application of dry-spun CNT-sheet electrode for flexible display. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼