RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Sea cucumber as a therapeutic aquatic resource for human health

        Siddiqui, Ruqaiyyah,Boghossian, Anania,Khan, Naveed Ahmed The Korean Society of Fisheries and Aquatic Scienc 2022 Fisheries and Aquatic Sciences Vol.25 No.5

        Sea cucumbers are worm-like, leathery bodied, benthic, marine organisms with a branched gonad. There are over 900 species, and these organisms are capable of changing their mechanical state, regenerating their small appendages, and digestive tract. Additionally, sea cucumbers possess both commercial and therapeutical value. Furthermore, it is thought that the metabolites these organisms possess may give rise to their therapeutical value. The use of sea cucumbers in therapy can be traced back to the Ming dynasty, where they were eaten for their tonic properties against constipation, hypertension, and rheumatism. A plethora of studies have been conducted, whereby different metabolites were extracted from sea cucumbers and tested for different therapeutic properties. Herein, we review and discuss the anti-cancer, anti-microbial, anti-coagulant, anti-diabetic, antioxidant, and anti-inflammatory properties of the sea cucumber by assessing literature on PubMed and Google Scholar. Furthermore, the genome and epigenome of these remarkable species is discussed. With the immense data supporting the therapeutic properties of sea cucumbers, further studies are warranted, in order to develop novel and innovative therapeutic compounds for the benefit of human health from these fascinating marine organisms.

      • KCI등재

        Antidiabetic Drugs and Their Nanoconjugates Repurposed as Novel Antimicrobial Agents against Acanthamoeba castellanii

        ( Ayaz Anwar ),( Ruqaiyyah Siddiqui ),( Muhammad Raza Shah ),( Naveed Ahmed Khan ) 한국미생물생명공학회(구 한국산업미생물학회) 2019 Journal of microbiology and biotechnology Vol.29 No.5

        Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.

      • KCI등재

        Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B

        ( Ayaz Anwar ),( Ruqaiyyah Siddiqui ),( Muhammad Raza Shah ),( Naveed Ahmed Khan ) 한국미생물 · 생명공학회 2019 Journal of microbiology and biotechnology Vol.29 No.1

        Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these goldconjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼