RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Micromeritics and Release Behaviours of Cellulose Acetate Butyrate Microspheres Containing Theophylline Prepared by Emulsion Solvent Evaporation and Emulsion Non-solvent Addition Method

        Mitra Jelvehgari,Fatemeh Atapour,Ali Nokhodchi 대한약학회 2009 Archives of Pharmacal Research Vol.32 No.7

        The present research work compares the effect of microsphere preparation technique on micromeritics and release behaviors of theophylline microspheres. Microspheres were prepared by oil-in oil (O1/O2) emulsion solvent evaporation method (ESE) using different ratios of anhydrous theophylline to cellulose acetate butyrate (CAB). Cyclohexane was used as non-solvent to modify the ESE technique (MESE method) and the effect of non-solvent volume on properties of microspheres was investigated. The obtained microspheres were analyzed in terms of drug content, particle size and encapsulation efficiency. The morphology of microsphere was studied using scanning electron microscope. The solid state of microspheres, heophylline and CAB were investigated using X-ray, FT-IR and DSC. The drug content of microspheres prepared by MESE method was significantly lower (15.54% ± 0.46) than microspheres prepared by ESE method (41.08 ± 0.40%). The results showed that as the amount of cyclohexane was increased from 2 mL to 6 mL the drug content of microspheres was increased from 15.54% to 28.71%. Higher encapsulation efficiencies were obtained for microspheres prepared by ESE method (95.87%) in comparison with MESE method (64.71%). Mean particle size of microsphere prepared by ESE method was not remarkably affected by drug to polymer ratio, whereas in MSES method when the volume of cyclohexane was increased the mean particle size of microsphere was significantly decreased. The ratio of drug to polymer significantly changed the rate of drug release from microspheres and the highest drug release was obtained for the microsphere with high drug to polymer ratio. The amount of cyclohexane did not significantly change the drug release. Although, x-ray showed a small change in crystallinity of theophylline in microspheres, DSC results proved that theophylline in microspheres is in amorphous state. No major chemical interaction between the drug and polymer was reported during the encapsulation process.

      • KCI등재

        Enhancement of Dissolution of Nystatin from Buccoadhesive Tablets Containing Various Surfactants and a Solid Dispersion Formulation

        Khalil Sakeer,Hind Al-Zein,Issa Hassan,Sandip Desai,Ali Nokhodchi 대한약학회 2010 Archives of Pharmacal Research Vol.33 No.11

        Nystatin is commonly employed to treat fungal infections in the mouth. It is not absorbed via the stomach and it will therefore not treat fungal infections in any part of the body other than the mouth. Nystatin buccoadhesive tablets release the drug very slowly due to the poor solubility of nystatin in water and also the presence of polymers with mucoadhesive properties. Therefore, the aim of the present study was to improve drug release from buccoadhesive tablets,while retaining adequate mucoadhesive properties. To this end, a solid dispersion of nystatin: lactose (1:3) was prepared and mixed with xanthan. The effects of hydrophilic surfactants such as cremophor RH40 and Tween 80 on drug release and mucoadhesive properties of nystatin tablets were also investigated as were swelling and erosion indices and strength of bioadhesion in vitro to a biological membrane. The interaction between nystatin and lactose in solid dispersion formulation was investigated by XRPD, FT-IR and DSC. The results showed that a solid dispersion formulation and mucoadhesive tablets containing surfactants led to faster drug release than their simple physical mixtures. Drug release was also faster from a solid dispersion compared to tablets containing surfactants. Swelling and erosion results showed that tablets made of a solid dispersion swelled and eroded faster than a physical mixture formulation. The presence of surfactant slightly increased the degree of swelling and erosion of buccoadhesive tablets.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼