RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Innervation Patterns of Autonomic Axons in the Human Endocrine Pancreas

        Rodriguez-Diaz, Rayner,Abdulreda, Midhat ,H.,Formoso, Alexander ,L.,Gans, Itai,Ricordi, Camillo,Berggren, Per-Olof,Caicedo, Alejandro Elsevier 2011 Cell metabolism Vol.14 No.1

        <P><B>Summary</B></P><P>The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, thus impacting glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are unknown, particularly in human. Here we demonstrate that the innervation of human islets is different from that of mouse islets and does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, unlike mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet, and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream.</P> <P><B>Highlights</B></P><P>► Detailed quantitative analysis of the innervation of mouse and human islets ► Human endocrine cells are sparsely innervated ► Sympathetic axons innervate vascular smooth muscle cells deep inside human islets ► Autonomic control of human islets may use unique mechanisms</P>

      • A review: Synthetic strategy control of magnetite nanoparticles production

        Yusoff, Ahmad H.M.,Salimi, Midhat N.,Jamlos, Mohd F. Techno-Press 2018 Advances in nano research Vol.6 No.1

        Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

      • Young capillary vessels rejuvenate aged pancreatic islets

        Almaca, Joana,Molina, Judith,Arrojo e Drigo, Rafael,Abdulreda, Midhat H.,Jeon, Won Bae,Berggren, Per-Olof,Caicedo, Alejandro,Nam, Hong Gil National Academy of Sciences 2014 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.111 No.49

        <P><B>Significance</B></P><P>The regulation of blood glucose is a homeostatic process that declines with age, but it is unknown whether this disturbance is a consequence of intrinsic dysfunction of the regulatory organ, the pancreatic islet. In marked contrast to the widely held notion that the insulin-producing pancreatic beta cell loses function with wear and tear, and thus causes age-related disturbances in glucose homeostasis, we show that mouse and human beta cells are fully functional at advanced age. The pancreatic islet as an organ, however, is threatened by vascular senescence. Replacing the islet vasculature in aged islet grafts rejuvenates the islet and fully restores glucose homeostasis, indicating that islet blood vessels should be targeted to mitigate frail glucose homeostasis associated with aging.</P><P>Pancreatic islets secrete hormones that play a key role in regulating blood glucose levels (glycemia). Age-dependent impairment of islet function and concomitant dysregulation of glycemia are major health threats in aged populations. However, the major causes of the age-dependent decline of islet function are still disputed. Here we demonstrate that aging of pancreatic islets in mice and humans is notably associated with inflammation and fibrosis of islet blood vessels but does not affect glucose sensing and the insulin secretory capacity of islet beta cells. Accordingly, when transplanted into the anterior chamber of the eye of young mice with diabetes, islets from old mice are revascularized with healthy blood vessels, show strong islet cell proliferation, and fully restore control of glycemia. Our results indicate that beta cell function does not decline with age and suggest that islet function is threatened by an age-dependent impairment of islet vascular function. Strategies to mitigate age-dependent dysregulation in glycemia should therefore target systemic and/or local inflammation and fibrosis of the aged islet vasculature.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼