RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.)

        Shanlin Yu,Na Chen,Maowen Su,Xiaoyuan Chi,Zhimeng Zhang,Lijuan Pan,Mingna Chen,Tong Wang,Mian Wang,Zhen Yang 한국유전학회 2016 Genes & Genomics Vol.38 No.6

        The cultivated peanut is important oil crop and salt stress seriously influences its development and yield. Tolerant varieties produced using transgenic techniques can effectively increase peanut plantation area and enhance its yields. However, little is known about how gene expression is regulated by salt stress in peanut. In this study, we screened genes regulated by salt stress in peanut roots using microarray technique. In total, 4828 up-regulated and 3752 down-regulated probe sets were successfully identified in peanut roots subjected to 3 and 48 h of salt stress. Data analysis revealed that different response groups existed between the up and down-regulated probe sets. The main up-regulated biological processes involved in salt stress responses included transcription regulation, stress response, and metabolism and biosynthetic processes. The main down-regulated biological processes included transport processes, photosynthesis and development. The Kyoto encyclopedia of genes and genomes pathway analysis indicated that metabolic pathway, biosynthesis of unsaturated fatty acids and plant–pathogen interaction, were mainly up-regulated in peanut under salt stress. However, photosynthesis and phenylalanine metabolism were mainly down-regulated during salt stress. The function of some probe sets in salt stress regulation was not clarified (e.g., protein functioning in cell cycle regulation and xylem development). Many of the genes we identified lacked functional annotations and their roles in response to salt stress are yet to be elucidated. These results identified some candidate genes as potential markers and showed an overview of the transcription map, which may yield some useful insights into salt-mediated signal transduction pathways in peanut.

      • KCI등재

        Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

        Tian Gao,Jiaolong Li,Lin Zhang,Yun Jiang,Maowen Yin,Yang Liu,Feng Gao,Guanghong Zhou 아세아·태평양축산학회 2015 Animal Bioscience Vol.28 No.7

        The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) and effective tumbling time (4, 6, 8, and 10 h) on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD) and significantly increased the total moisture content, product yield, salt soluble proteins (SSP) solubility, immobilized water component (p<0.05) compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05), whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05). These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops.

      • SCIESCOPUSKCI등재

        Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

        Gao, Tian,Li, Jiaolong,Zhang, Lin,Jiang, Yun,Yin, Maowen,Liu, Yang,Gao, Feng,Zhou, Guanghong Asian Australasian Association of Animal Productio 2015 Animal Bioscience Vol.28 No.7

        The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) and effective tumbling time (4, 6, 8, and 10 h) on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD) and significantly increased the total moisture content, product yield, salt soluble proteins (SSP) solubility, immobilized water component (p<0.05) compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05), whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05). These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼