RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        CO2 fixation and lipid production by microalgal species

        Srinivasa Reddy Ronda,Pavani Parupudi,Chandrika Kethineni,Pradip Babanrao Dhamole,Sandeep Vemula,Prasada Rao Allu,Mahendran Botlagunta,Sujana Kokilagadda 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.2

        Microalgal species Nannochloropsis limnetica, Botryococcus braunii, and Stichococcus bacillaris were compared for their ability to grow, remove CO2, and accumulate lipids in their biomass under CO2-enriched atmosphere. Overall, N. limnetica outperformed the other two cultures and distinctly exhibited higher specific growth rate (0.999 d−1) and CO2 fixation rate (0.129 gL−1 d−1) with a high specific lipid yield (40% w/w). The volumetric CO2 fixation rate for all three species was validated with biomass productivity and mass transfer methods (P<0.005 and R2=0. 98). At 10% CO2, N. limnetica showed one-and-a-half times more carbon fixation efficiency over B. braunii, and S. bacillaris. On the other hand, total fatty acids of N. limnetica dispalyed an apparent increase in oleic acid. Whereas, under similar conditions, N. limnetica exhibited reduced eicosapentaenoic acid. These findings suggest that at high CO2 conditions, N. limnetica proved to be an efficient CO2 capture algal system and can be considered for biofuel applications.

      • KCI등재

        Production of Recombinant Human Asparaginase from Escherichia coli under Optimized Fermentation Conditions: Effect of Physicochemical Properties on Enzyme Activity

        Rajesh Kumar Kante,Silpa Somavarapu,Sandeep Vemula,Chandrika Kethineni,Maheshwara Reddy Mallu,Srinivasa Reddy Ronda 한국생물공학회 2019 Biotechnology and Bioprocess Engineering Vol.24 No.5

        The recombinant human asparaginase (rhASP) plays an important role in the treatment of acute lymphoblastic leukemia. In the present work, volumetric mass transfer coefficient (kLa) values are derived from the E. coli cultivation under different agitation and aeration conditions, in order to improve the rhASP productivity. The aeration and agitation conditions were systematically optimized by the kLa. The maximum biomass (2.4 g/L) and rhASP (1.68 g/L) are achieved with the kLa of 0.024 s-1 at 1.5 lpm and 700 rpm process conditions. The kinetic properties of purified rhASP are also extensively studied and optimized for the maximal enzyme activity. The optimal pH, temperature and incubation duration conditions for accomplishing maximum enzyme activity are found to be 9.0, 40°C, and 30 min, respectively. The optimum substrate concentration and substrate specificity for the highest enzyme activity are of 0.07 M and L-asparagine, respectively. The enzyme activity (204 IU/mL) is significantly improved in the presence of sodium metal (Na+) ions and the inhibitors 2- mercaptoethanol, bromoacetic acid and urea have presented the highest inhibition rate on rhASP activity. The enzyme kinetic parameters Km and Vmax of the purified rhASP are recorded as 2.25 mM and 250 IU/mL, respectively. This work provides the extensive characteristic properties of rhASP enzyme, which enables us to place in a competition for the development of oncology drugs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼