RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Ferritin Overload Suppresses Male Fertility Via altered Acrosome Reaction

        Kwon, Woo-Sung,Rahman, Md Saidur,Kim, Ye-Ji,Ryu, Do-Yeol,Kahtun, Amena,Pang, Myung-Geol The Korean Society of Animal Reproduction 2015 Reproductive & developmental biology Vol.39 No.4

        Iron is required for cell viability but is toxic in excess. While the iron-mediated malfunction of testicular cells is well appreciated, the underlying mechanism(s) of this effect and its relationship with fertility are poorly understood. Ferritin is a ubiquitous intracellular protein that controls iron storage, ferroxidase activity, immune response, and stress response in cells. Ferritin light chain protein (FTL) is the light subunit of the Ferritin. Previously, we had identified the FTL in bovine spermatozoa following capacitation. In present study, to investigate the role of Ferritin in sperm function, mice spermatozoa were incubated with multiple doses (1, 10 and $100{\mu}M$) of sodium nitroprusside (SNP), an iron donor. SNP was increased Ferritin levels in a dose-dependent manner. The Ferritin was detected on the acrosome in spermatozoa by immunocytochemistry. Short-term exposure of spermatozoa to SNP increased tyrosine phosphorylation and the acrosome reaction (AR). Finally, SNP affected a significant decrease in the rate of fertilization as well as blastocyst formation during early embryonic development. On the basis of these results, we propose that the effects of Ferritin on the AR may reduce overall sperm function leads to poor fertility in males and compromised embryonic development.

      • Ferritin Overload Suppresses Male Fertility Via altered Acrosome Reaction

        Woo-Sung Kwon,Md Saidur Rahman,Ye-Ji Kim,Do-Yeol Ryu,Amena Kahtun,Myung-Geol Pang 한국동물생명공학회(구 한국동물번식학회) 2015 Reproductive & developmental biology Vol.39 No.4

        Iron is required for cell viability but is toxic in excess. While the iron-mediated malfunction of testicular cells is well appreciated, the underlying mechanism(s) of this effect and its relationship with fertility are poorly understood. Ferritin is a ubiquitous intracellular protein that controls iron storage, ferroxidase activity, immune response, and stress response in cells. Ferritin light chain protein (FTL) is the light subunit of the Ferritin. Previously, we had identified the FTL in bovine spermatozoa following capacitation. In present study, to investigate the role of Ferritin in sperm function, mice spermatozoa were incubated with multiple doses (1, 10 and 100 μM) of sodium nitroprusside (SNP), an iron donor. SNP was increased Ferritin levels in a dose-dependent manner. The Ferritin was detected on the acrosome in spermatozoa by immunocytochemistry. Short-term exposure of spermatozoa to SNP increased tyrosine phosphorylation and the acrosome reaction (AR). Finally, SNP affected a significant decrease in the rate of fertilization as well as blastocyst formation during early embryonic development. On the basis of these results, we propose that the effects of Ferritin on the AR may reduce overall sperm function leads to poor fertility in males and compromised embryonic development.

      • Ferritin Overload Suppresses Male Fertility Via altered Acrosome Reaction

        Woo-Sung Kwon,Md Saidur Rahman,Ye-Ji Kim,Do-Yeol Ryu,Amena Kahtun,Myung-Geol Pang 한국동물번식학회 2015 Reproductive & developmental biology Vol.39 No.4

        Iron is required for cell viability but is toxic in excess. While the iron-mediated malfunction of testicular cells is well appreciated, the underlying mechanism(s) of this effect and its relationship with fertility are poorly understood. Ferritin is a ubiquitous intracellular protein that controls iron storage, ferroxidase activity, immune response, and stress response in cells. Ferritin light chain protein (FTL) is the light subunit of the Ferritin. Previously, we had identified the FTL in bovine spermatozoa following capacitation. In present study, to investigate the role of Ferritin in sperm function, mice spermatozoa were incubated with multiple doses (1, 10 and 100 μM) of sodium nitroprusside (SNP), an iron donor. SNP was increased Ferritin levels in a dose-dependent manner. The Ferritin was detected on the acrosome in spermatozoa by immunocytochemistry. Short-term exposure of spermatozoa to SNP increased tyrosine phosphorylation and the acrosome reaction (AR). Finally, SNP affected a significant decrease in the rate of fertilization as well as blastocyst formation during early embryonic development. On the basis of these results, we propose that the effects of Ferritin on the AR may reduce overall sperm function leads to poor fertility in males and compromised embryonic development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼