RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Echelle grating silicon multi/demultiplexers with single-reflection total internal reflectors.

        Park, Sahnggi,Kim, Sang-Gi,Park, Jeagyu,Kim, Gyungock Optical Society of America 2012 Optics express Vol.20 No.21

        <P>We present a silicon-on-insulator Echelle grating 8-channel demutiplexer showing characteristic features, average insertion loss 2.4 dB measured at 1520~1570 nm, adjacent channel crosstalk 15-18 dB, and channel spacing 11.9 nm. Our Echelle grating is remarked by a total internal reflector (TIR) which reflects incident light by a single reflection in contrast to the double reflections of retro-reflector TIR Echelle gratings.</P>

      • SCIESCOPUSKCI등재

        Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

        Won, Dae Hee,Ahn, Jongsun,Sung, Sangkyung,Lee, Chulsoo,Bu, Sungchun,Jang, Jeagyu,Lee, Young Jae The Korean Society for Aeronautical and Space Scie 2015 International Journal of Aeronautical and Space Sc Vol.16 No.3

        Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.

      • SCIESCOPUSKCI등재

        Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

        Dae Hee Won,Jongsun Ahn,Sangkyung Sung,Chulsoo Lee,Sungchun Bu,Jeagyu Jang,Young Jae Lee 한국항공우주학회 2015 International Journal of Aeronautical and Space Sc Vol.16 No.3

        Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼