RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        경상분지내 열수광상의 광화작용과 백악기 화강암류의 화학성분 변화와의 관계

        이재영,이진국,이인호,김상욱,Lee, Jae Yeong,Lee, Jin Kook,Lee, In Ho,Kim, Sang Wook 대한자원환경지질학회 1994 자원환경지질 Vol.27 No.4

        The Cretaceous granitic rocks show differences in rock types and chemical compositions according to metallogenic provinces of copper, lead zinc and molybdenum in the Gyeongsang basin. Jindong granites are of granodiorite~quartz diorite~diorite in Cu-province; Makeunsan/Yucheon-Eonyang granites, granodiorite~granite in Pb Zn-province; Onjeongri-Yeonghae granites, granodiorite~quartz diorite in Mo-province, and there is a trend that productive masses are less differenciated than barren masses in Cu and Pb-Zn provinces whereas productive masses are more differenciated than barren masses in Mo province. Metallogenic provinces are distinguishable by variations of major and trace elements. The Cretaceous granitic rocks are highest in the content of Ca, Mg and other basic major elements and lowest in the content of K and Na in Cu provicne; the variation trends are vice versa in Pb-Zn province. Trace elements such as Rb and Sr show variations related to K and Ca, and metallogenic provinces are also distinguishable by their ratios. The granitic rocks of Mo province have intermediate content of major and trace elements, but are clearly distinguishable from Jindong granites and partly overlapped by Yucheon-Eonyang granites. Chlorine content in biotites is higher in a productive mass than in a barren mass in Cu province. Therefore, the mineralogical and chemical compositions are applicable as geochemical index to distinguish the types of mineralizaion, and productive and barren masses of the Cretaceous granitic rocks in the Gyeongsang basin.

      • KCI등재

        경북지역 폐금속광산이 환경에 미치는 영향

        이재영,김종근,이인호,이진국,Lee, Jae Yeong,Kim, Jong Gun,Lee, In Ho,Lee, Jin Kook 대한자원환경지질학회 1993 자원환경지질 Vol.26 No.4

        The heavy metal contents are more abundant in stream waters, paddy soils and rice plants in the vicinity of abandoned mines compared to the surrounding areas in the Kyungpook province. However, these contents tend to decrease with distance from mines, and show some variation under different geological and geochemical environments. The Sin-stream waters have high contents of Cu=4.9 ppm, Pb=0.1 ppm, Zn=3.5 ppm and other heavy metals (Ni, Co, Cd) at Dalsung abandoned mine and low contents of Cu=0.4 ppm, Pb=0.1 ppm, Zn=0.1 ppm and other metals= 0.002 ppm in the surrounding area. The high contents decrease in the downstream in the area of calcareous sedimentary rocks. The paddy soils have high contents of approximately Cu=51 ppm, Pb=83 ppm, Zn=211 ppm, and Cd=11.3 ppm in the vicinity of Gunwi abandoned mine but low contents of Cu=4.5 ppm, Pb=2.9 ppm, Zn=60 ppm and Cd=0.4 ppm in the surrounding area. The Dadeog abandoned mine also shows similar trends to Gunwi mine. The contents of heavy metals of rice plants are high in the roots but trends to decrease through stem+leaf and become low in brown rices.

      • KCI등재

        금속폐광산주변의 토양, 식물 및 하천의 중금속오염에 대한 지화학적 연구 -달성 및 경산광산-

        이재영,이인호,이순영,Lee, Jae Yeong,Lee, In Ho,Lee, Sun Yeong 대한자원환경지질학회 1996 자원환경지질 Vol.29 No.5

        The tonnage of copper and tungsten produced at Dalseong mine by Taehan Tungsten Mining Company from 1961 to 1971 was 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70wt.% WO, but the mine was closed in 1974. Kyeongsan mine is a small abandoned cobalt mine with no data of production. To investigate the pollution level of the mine areas, soils, plants (Ohwi and Pampanini), stream waters and stream sediments were taken and Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr were analysed by ICP. Soils are considerably contaminated by the heavy metals related to ore deposits, The heavy metal contents in plants vary with the species and parts of plants. Stream waters are anomalously high in heavy metals in the vicinity of the mines but the contents decrease downstream in the process of dilution and precipiation. However, heavy metal contents increase very high in stream sediments due to precipiation. To protect environmental damages caused by acid mine drainages wetlands must be constructed outside pits, and it is necessary to fill pits with waters, limestone chips and organic materials, which give reducing and alkaline condition to ores. Under the condition pyrite is protected from oxidation and aqueous iron sulphates precipitate to form stable secondary pyrite.

      • SCOPUSKCI등재

        천연 벤토나이트로부터 합성된 제올라이트 A의 특성

        이재영,조승래,이홍기,심미자,이주성,김상욱,Lee, Jae-Yeong,Jo, Seung-Rae,Lee, Hong-Gi,Sim, Mi-Ja,Lee, Ju-Seong,Kim, Sang-Uk 한국재료학회 1995 한국재료학회지 Vol.5 No.8

        경북 감포지역에서 산출되는 천연 벤토나이트를 이용하여 제올라이트를 합성하였으며 세제용 builder로서 가능성을 연구하였다. 최적의 합성조건은 기질의 몰비가 SiO$_2$/Al$_2$O$_3$=2, $Na_2$O$_3$/Al$_2$O$_3$=1, $H_2O$/A1$_2$O$_3$=30이고 9$0^{\circ}C$에서 3시간 반응시킬 경우였고, 이 조건에서는 A형 제올라이트가 합성되는 것을 XRD를 통하여 확인하였다. 최적 조건에서 합성된 제올라이트의 이온교환능을 측정하기 위하여 경도 40$^{\circ}$Dh의 CaCl$_2$용액과 3$0^{\circ}C$에서 IS분 접촉시킨 결과 264.9mg CaO/g-zeolite 정도로 우수한 값을 나타내었다. 이 시료의 백색도는 89%이었고, 평균 입자크기는 9.95$\mu\textrm{m}$이었다. Synthetic zeolite was prepared by using of natural bentonite from Kampo area and the application of detergent builder was investigated. The optimum synthetic condition was SiO$_2$/Al$_2$O$_3$= 2, Na$_2$O/A1$_2$O$_3$=1, H$_2$O/A1$_2$O$_3$=30 at 90$^{\circ}C$ for 3hr and it was found by XRD analysis that the zeolite synthesized under this condition was type A. When the zeolite A synthesized under the optimum condition was contacted with 40$^{\circ}$Dh CaCl$_2$solution at 30$^{\circ}C$ for 15min, the cation exchange capacity was 264.9mg CaO/g-zeolite. And the whiteness of the sample was 89% and the mean particle size was 9.95$\mu\textrm{m}$.

      • KCI등재

        경상분지내 동광상 관련 진동화강암류에 대한 지화학적 연구

        이재영,이진국,박법정,이인호,김상욱,Lee, Jae Yeong,Lee, Jin Kook,Park, Beob Jeong,Lee, In Ho,Kim, Sang Wook 대한자원환경지질학회 1994 자원환경지질 Vol.27 No.2

        Jindong Granites are plotted mainly in the region of granodiorite~diorite of the Streckeisen's diagram, while Yucheon-Eonyang Granites and Onjonri Granites in the region of monzo-granite and monzo-granite~granodiorite, respectively. Jindong Granites show a differenciation trend of calc-alkaline magma, and its magmatic evolution from intermediate to acidic rocks, which might form mineralizing solution, is consistant with the general path of the Cretaceous granitic rocks including Yucheon-Eonyang Granites and Onjongri Granites. The differenciation index (D.I.) is 35~80 for Jindong Granites, which is lower than 85~95 of Yucheon-Eonyang Granites and is partly overlapped by 67~84 of Onjongri Granites. There is clear difference in content of some major and trace elements between Jindong Granites of Cu province and the other granitic rocks of Pb-Zn and Mo provinces. Between these metallogenic provicnes, Cu content is high in Jindong Granites near Haman-Gunbuk mineralized zone, while Pb and Zn are relatively abundant in Yucheon-Eonyang Granites and Mo in Onjongri Granites. Therefore, Jindong Granites of the Cu province are distinguishable by chemical compositions and their related geochemical characteristics from the other Cretaceous granitic rocks of Pb-Zn and Mo provinces. However, the content of Cu and Cl in biotite is applicable to distinguish a productive phase from a barren phase of Jindong Granites, because Cu and Cl show a trend to be concentrated in biotite of Jindong Gratites in the Haman-Gunbuk mineralized zone.

      • KCI등재

        경상분지내 철광상 관련 울산화강암에 대한 지화학적 연구

        이재영,김상욱,김영기,Lee, Jae Yeong,Kim, Sang Wook,Kim, Young Ki 대한자원환경지질학회 1992 자원환경지질 Vol.25 No.2

        Ulsan granite is plotted mainly in the region of syeno-granite of the Streckeisen diagram, which consists with those of iron related granites in the area of Kimhae-Mulgum, while Chindong granites and Yucheon-Eonyang granites are plotted in the regions of granodiorite-diorite and monzo-granite, respectively. These granites show a differentiation trend of calc-alkaline magma, and their magmatic evolution from intermediate to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. The difference index (D.I.) is 70~90 for Ulsan granite, which lies between 35~80 of Chindong granites and 85~95 of Yucheon-Eonyang granites. These granites are distinguishable from each other by variation patterns of chemical elements. For instance, there is clear difference in content of some major and trace elements between Ulsan granite and Cu-related Chindong granites: Ulsan granite has high content of K (2.68%) and Ba (636 ppm), and low content of Ca (1.07%), Mg (0.50%) and Sr (185 ppm), whereas Chindong granites has less content of K (1.62%) and Ba (382 ppm), and higher content of Ca (3.75%), Mg (1.42%) and Sr (405 ppm). However, the content of Ulsan granite overlaps partly those of Yucheon-Eonyang granites, which are apparently dividable from Chindong granites. There is an usual trend that Cu content is high in Chindong granites of Cu province and Zn content is higher in Yucheon-Eonyang granites of Pb-Zn province. But it is unusual that Cu and Zn are higher in Ulsan granite (34 ppm, 74 ppm) than in Chindong granites (15 ppm, 22 ppm) and Yucheon-Eonyang granites (14 ppm, 43 ppm). This may be due to the reason that Ulsan granite is productive and Cu-Zn minerals are associated with iron ores. Productive Chindong granites in Haman-Gunbug area and Yuchon-Eonyang granites near ore deposits have higher content of Cu and Zn than Ulsang granite. Therefore, it is expected that chemical variation patterns of granites are applicable to distinguish mineral commodity of ore deposits (iron, copper, or lead-zinc) related with the granites in the Gyeongsasng basin.

      • KCI등재

        평해지역 온정화강암 중 미량원소와 광화작용의 관계에 대한 지화학적 연구

        이재영,이진국,Lee, Jae Yeong,Lee, Jin Gook 대한자원환경지질학회 1992 자원환경지질 Vol.25 No.3

        The variations of certain major and trace elements of the Onjong granite mass was studied on the basis of petrological and geochemical characteristics and compared with those of the Eonyang-Yucheon granite masses in order to investigate the geochemical differences of the granitic rocks in relation to mineralization between Pb-Zn ore district and Pb-Zn-Mo-W ore district in Kyeongsang basin. The Onjong granite mass is classified into granodiorite and monzo-granite, and the Eonyang-Yucheon granite masses into monzo-granite by the Streckeisen's diagram. Between both granite masses there are clear differences in contents of certain major elements and lithophile trace elements. The former have high contents of Ca (2.94%), Mg (1.66%) and Sr (365 ppm), and low contents of K (3.52%), Na (3.51%), Rb (116 ppm), Ba (640 ppm) and Li (18.9 ppm), whereas the latter have high contents of K (4.02%), Na (4.28%), Rb (145 ppm), Ba (695 ppm) and Li (19.3 ppm), and low contents of Ca (1.42%), Mg (0.43%) and Sr (161 ppm). Except for Mo, there are not clear differences in chalcophile trace elements between two granite masses: the Onjong granite mass has higher Mo content (7.1 ppm) lnan that (1.7 ppm) of the Eonyang-Yucheon granite masses, but Pb and Zn contents are similar between the Onjong granite mass (Pb=8.7 ppm, Zn=37.1 ppm) and the Eonyang-Yucheon granite masses (Pb=7.8 ppm, Zn=39.8 ppm). Ca and Sr contents of the Onjong granite mass (Ca> 1.5%, Sr> 270 ppm) are higher than those of the Eonyang- Yucheon granite masses (Ca<1.5%, Sr<270ppm), and Rb/Sr, Rb-Rb/Sr and K-Rb/Sr ratios are clearly distinguishable between the Onjong granite mass(Rb/Sr<0.51, Rb-Rb/Sr>250 and K-Rb/Sr>5.2) and the Eonyang- Yucheon granite masses (Rb/Sr>0.51, Rb-Rb/Sr<250 and K-Rb/Sr<5.0). Thus, variations of certain major and trace elements and ratios are applicable as geochemical index to distinguish the types of mineralization of the ore districts related to the Cretaceous granitic rocks in the Kyeongsang basin.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼