RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An anisotropic ultrasonic transducer for Lamb wave applications

        Wensong Zhou,Hui Li,Fuh-Gwo Yuan 국제구조공학회 2016 Smart Structures and Systems, An International Jou Vol.17 No.6

        An anisotropic ultrasonic transducer is proposed for Lamb wave applications, such as passive damage or impact localization based on ultrasonic guided wave theory. This transducer is made from a PMNPT single crystal, and has different piezoelectric coefficients d31 and d32, which are the same for the conventional piezoelectric materials, such as Lead zirconate titanate (PZT). Different piezoelectric coefficients result in directionality of guided wave generated by this transducer, in other words, it is an anisotropic ultrasonic transducer. And thus, it has different sensitivity in comparison with conventional ultrasonic transducer. The anisotropic one can provide more information related to the direction when it is used as sensors. This paper first shows its detailed properties, including analytical formulae and finite elements simulations. Then, its application is described.

      • KCI등재

        Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems

        Gui-Lin She,Yi-Ru Ren,Fuh-Gwo Yuan 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.31 No.6

        In this paper, wave propagation is studied and analyzed in double-layered nanotubes systems via the nonlocal strain gradient theory. To the author's knowledge, the present paper is the first to investigate the wave propagation characteristics of double-layered porous nanotubes systems. It is generally considered that the material properties of nanotubes are related to the porosity and hygro-thermal effects. The governing equations of the double-layered nanotubes systems are derived by using the Hamilton principle. The dispersion relations and displacement fields of wave propagation in the double nanotubes systems which experience three different types of motion are obtained and discussed. The results show that the phase velocities of the double nanotubes systems depend on porosity, humidity change, temperature change, material composition, non-local parameter, strain gradient parameter, interlayer spring, and wave number.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼