RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Sequence-based 5-mers highly correlated to epigenetic modifications in genes interactions

        Dariush Salimi,Ali Moeini,Ali Masoudi‑Nejad 한국유전학회 2018 Genes & Genomics Vol.40 No.12

        One of the main concerns in biology is extracting sophisticated features from DNA sequence for gene interaction determination, receiving a great deal of researchers’ attention. The epigenetic modifications along with their patterns have been intensely recognized as dominant features affecting on gene expression. However, studying sequenced-based features highly correlated to this key element has remained limited. The main objective in this research was to propose a new feature highly correlated to epigenetic modifications capable of classification of genes. In this paper, classification of 34 genes in PPAR signaling pathway associated with muscle fat tissue in human was performed. Using different statistical outlier detection methods, we proposed that 5-mers highly correlated to epigenetic modifications can correctly categorize the genes involved in the same biological pathway or process. Thirty-four genes in PPAR signaling pathway were classified via applying a proposed feature, 5-mers strongly associated to 17 different epigenetic modifications. For this, diverse statistical outlier detection methods were applied to specify the group of thoroughly correlated genes. The results indicated that these 5-mers can appropriately identify correlated genes. In addition, our results corresponded to GeneMania interaction information, leading to support the suggested method. The appealing findings imply that not only epigenetic modifications but also their highly correlated 5-mers can be applied for reconstructing gene regulatory networks as supplementary data as well as other applications like physical interaction, genes prioritization, indicating some sort of data fusion in this analysis.

      • Assessment of collapse safety margin for DDBD and FBD-designed RC frame buildings

        Dariush Alimohammadi,Esmaeel Izadi Zaman Abadi 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.83 No.2

        This paper investigates the seismic performance of buildings designed using DDBD (Direct Displacement based Design) and FBD (Force based Design) approaches from the probabilistic viewpoint. It aims to estimate the collapse capacity of structures and assess the adequacy of seismic design codes. In this regard, (i) IDA (Incremental Dynamic Analysis) curves, (ii) interstory drift demand distribution curves, (iii) fragility curves, and (iv) the methodology provided by FEMA P-695 are applied to examine two groups of RC moment resistant frame buildings: 8-story structures with different plans, to study the effect of different span arrangements; and 3-, 7- and 12-story structures with a fixed plan, to study the dynamic behavior of the buildings. Structural modeling is performed in OpenSees software and validated using the results of an experimental model. It is concluded that increasing the building height would not significantly affect the response estimation of IDA and fragility curves of DDBDdesigned structures, while the change in span arrangements is effective in estimating responses. In the investigation of the code adequacy, unlike the FBD approach, the DDBD can satisfy the performance criteria presented in FEMA P-695 and hence provide excellent performance.

      • KCI등재
      • Optimizing the impact resistance of high tenacity Nylon 66 weft knitted fabrics via genetic algorithm

        Dariush Semnani,Farshad Hassani,Mehdi Hadjianfar,Pedram Rezazadeh Tehrani 한국의류학회 2016 Fashion and Textiles Vol.3 No.1

        The aim of the present research is evaluating the impact resistance of weft knitted fabrics which are knitted in basic patterns from the high tenacity Nylon 66. The woven fabrics have been applied for manufacturing technical and ballistic textiles so far. Although woven fabrics have been demonstrated satisfactory tensile properties, but they have not been resisted against impact, because of their poor strain against tensile forces. This research is important because knitted fabrics are applied in wide range of applications including technical textiles such as, package belts, safety belts, ballistic belts, and can be used to remove ice from airplane wings. Various knitted fabrics with different knitting elements such as knit, tuck and miss loops were produced. Mechanical properties including strength, work of the rupture and impact resistance of knitted samples were tested. The artificial neural network was used to predict mechanical properties of fabrics produced from the knitted structure as fitness function in genetic algorithm. After that, genetic algorithm was applied to find the optimum structure of knitted fabric with maximum impact resistance. The results of the genetic algorithm show that optimum structure of the fabric is cross-miss and rib structure with high stitch density.

      • KCI등재

        Effect of Antimony on the Optical and Physical Properties of Sb-V2O5-TeO2 Glasses

        Dariush Souri,Mousa Mohammadi,Hamideh Zaliani 대한금속·재료학회 2014 ELECTRONIC MATERIALS LETTERS Vol.10 No.6

        Ternary glass systems of the form xSb-(60-x) V2O5-40TeO2 (Sx glasses) with 0 ≤ x ≤ 15 (in mol. %) have been prepared by using the normal melt quenching technique. The optical absorption spectra of these glasses have been recorded within wavelength range of 190 - 1100 nm. The absorption spectrum fitting method was employed to obtain the energy band gap. In this method, only the measurement of absorbance spectrum of the glass is needed. The position of the absorption edge and therefore the optical band gap values were found to be depend on glass composition. Results show that the optical band gap is in the range 1.57 - 2.14 eV. For each sample, the width of the band tail was determined. The densities of present glasses were measured and the molar volumes were calculated. Also, some thermal properties such as glass transition temperature (Tg) and crystallization temperature (TCr) were obtained by using differential scanning calorimetry (DSC) technique, and from which the glass thermal stability S and glass forming tendency Kgl were calculated. Results show that these glasses (specially for x ≥ 10 mol. %) have good stability and therefore good resistance against thermal shocks for technological applications in fiber devices. Also, Tg values indicate the rigidity and packing of the samples increase with increasing the Sb concentration as a network modifier.

      • Jacquard pattern optimizing in weft knitted fabrics via interactive genetic algorithm

        Dariush Semnani,Mehdi Hadjianfar,Hamed Aziminia,Mohammad Sheikhzadeh 한국의류학회 2014 Fashion and Textiles Vol.1 No.1

        A genetic algorithm is a method to respond to troubles that are indissoluble by common methods and must be utilized to try and fault method. It is difficult to appraise all of responses if there are many answers. Algorithm genetic can contain a large vast of responses and find the best of them by receiving feedbacks from problems. Several designs with different colors can be done in weft knitted Jacquard designing system. However, many patterns might not have enough attractiveness and beauty. The choice of interesting and stylish patterns of the huge set of designs according to customer judgment is difficult. An interactive genetic algorithm that received necessary feedbacks from the user, can be used in design optimization and choosing ideal patterns. In this paper a software has been constructed to optimize jacquard pattern in weft knitted fabrics based on interactive genetic algorithm.

      • KCI등재

        ZnSe and copper-doped ZnSe nanocrystals (NCs): Optical absorbance and precise determination of energy band gap beside their exact optical transition type and Urbach energy

        Dariush Souri,Ali Reza Khezripour,Mehdi Molaei,Masoud Karimipour 한국물리학회 2017 Current Applied Physics Vol.17 No.1

        The using of a reliable and accurate new method (called in literature as derivation of absorption spectrum fitting (DASF)) for evaluation of the optical band gap (Eg) and also the exact nature of charge carriers optical transitions, is investigated in ZnSe and ZnSe:Cu nanocrystals (NCs) synthesized by rapid microwave irradiation. This method can be performed by using the output of UVeVisible spectroscopy. The obtained Eg values are within the range of 2.985e3.261 eV, depending to the microwave irradiation time and Cu dopant percentage (decreasing trend with increasing of irradiation time and Cu content). The DASF-based obtained results for ZnSe and ZnSe:Cu nanoparticles, showed the more precise values of band gap, with the same trend of previously qualitative reported data on the same samples. Also, the direct gap nature of their optical transitions was justified. To perform the method, there is no any need to the concentration of solutions and merely one need the direct absorption or transmission spectra. In other word, DASF technique was employed on ZnSe NCs to confirm its validity and to avoid non-precise reports on optical band gap which can affect on the device optimizations based on these samples. Moreover, using the values of Eg, refractive index and dielectric constant of each sample were obtained at the absorption edge. Also, the width of the tailing states in the gap (Urbach energy: ETail) was estimated and were within the range of 0.049e0.122 eV, which their very small values in compare with Eg imply to the sharp valence and conduction band edges; it means the good crystallinity nature of the produced samples.

      • KCI등재

        Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review

        Dariush Bastani,Nazila Esmaeili,Mahdieh Asadollahi 한국공업화학회 2013 Journal of Industrial and Engineering Chemistry Vol.19 No.2

        Polymeric membrane technology has received extensive attention in the field of gas separation, recently. However, the tradeoff between permeability and selectivity is one of the biggest problems faced by pure polymer membranes, which greatly limits their further application in the chemical and petrochemical industries. To enhance gas separation performances, recent works have focused on improving polymeric membranes selectivity and permeability by fabricating mixed matrix membranes (MMMs). Inorganic zeolite materials distributed in the organic polymer matrix enhance the separation performance of the membranes well beyond the intrinsic properties of the polymer matrix. This concept combines the advantages of both components: high selectivity of zeolite molecular sieve, and mechanical integrity as well as economical processability of the polymeric materials. In this paper gas permeation mechanism through polymeric and zeolitic membranes, material selection for MMMs and their interaction with each other were reviewed. Also, interfacial morphology between zeolite and polymer in MMMs and modification methods of this interfacial region were discussed. In addition, the effect of different parameters such as zeolite loading, zeolite pore size, zeolite particle size, etc. on gas permeation tests through MMMs was critically reviewed.

      • KCI등재후보

        Investigating the effects of span arrangements on DDBD-designed RC buildings under the skew seismic attack

        Dariush Alimohammadi,Esmaeel Izadi Zaman Abadi 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.77 No.1

        This paper focuses on examining the effects of span arrangements on displacement responses of plan-symmetric RC frame buildings designed using the direct displacement-based design (DDBD) method by employing non-linear analyses and the skew seismic attack. In order to show the desired performance of DDBD design approach, the force-based design approach is also used to examine the seismic performance of the selected structures. To realize this objective, 8-story buildings with different plans are selected. In addition, the dynamic behavior of the structures is evaluated by selecting 3, 7, and 12-story buildings. In order to perform non-linear analyses, OpenSees software is used for modeling buildings. Results of an experimental model are used to validate the analytical model implemented in OpenSees. The results of non-linear static and non-linear dynamic analyses indicate that changing span arrangements does not affect estimating the responses of structures designed using the DDBD approach, and the results are more or less the same. Next, in order to apply the earthquake in non-principle directions, DDBD structures, designed for one-way performance, are designed again for two-way performance. Time history analyses are performed under a set of artificial acceleration pairs, applied to structures at different angles. It is found that the mean maximum responses of earthquakes at all angles have very good agreement with the design-acceptable limits, while the response of buildings along the height direction has a relatively acceptable and uniform distribution. Meanwhile, changes in the span arrangements did not have a significant effect on displacement responses.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼