RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Multi-Exchange Neighborhood Search Heuristics for the Multi-Source Capacitated Facility Location Problem

        Chiuh-Cheng Chyu,Wei-Shung Chang 대한산업공학회 2009 Industrial Engineeering & Management Systems Vol.8 No.1

        We present two local-search based metaheuristics for the multi-source capacitated facility location problem. In such a problem, each customer’s demand can be supplied by one or more facilities. The problem is NP-hard and the number of locations in the optimal solution is unknown. To keep the search process effective, the proposed methods adopt the following features: (1) a multi-exchange neighborhood structure, (2) a tabu list that keeps track of recently visited solutions, and (3) a multi-start to enhance the diversified search paths. The transportation simplex method is applied in an efficient manner to obtain the optimal solutions to neighbors of the current solution under the algorithm framework. Two in-and-out selection rules are also proposed in the algorithms with the purpose of finding promising solutions in a short computational time. Our computational results for some of the benchmark instances, as well as some instances generated using a method in the literature, have demonstrated the effectiveness of this approach.

      • SCOPUSKCI등재

        Multi-Exchange Neighborhood Search Heuristics for the Multi-Source Capacitated Facility Location Problem

        Chyu, Chiuh-Cheng,Chang, Wei-Shung Korean Institute of Industrial Engineers 2009 Industrial Engineeering & Management Systems Vol.8 No.1

        We present two local-search based metaheuristics for the multi-source capacitated facility location problem. In such a problem, each customer's demand can be supplied by one or more facilities. The problem is NP-hard and the number of locations in the optimal solution is unknown. To keep the search process effective, the proposed methods adopt the following features: (1) a multi-exchange neighborhood structure, (2) a tabu list that keeps track of recently visited solutions, and (3) a multi-start to enhance the diversified search paths. The transportation simplex method is applied in an efficient manner to obtain the optimal solutions to neighbors of the current solution under the algorithm framework. Two in-and-out selection rules are also proposed in the algorithms with the purpose of finding promising solutions in a short computational time. Our computational results for some of the benchmark instances, as well as some instances generated using a method in the literature, have demonstrated the effectiveness of this approach.

      • KCI등재

        A Dual-Population Memetic Algorithm for Minimizing Total Cost of Multi-Mode Resource-Constrained Project Scheduling

        Zhi-Jie Chen,Chiuh-Cheng Chyu 대한산업공학회 2010 Industrial Engineeering & Management Systems Vol.9 No.2

        Makespan and cost minimization are two important factors in project investment. This paper considers a multi-mode resource-constrained project scheduling problem with the objective of minimizing costs, subject to a deadline constraint. A number of studies have focused on minimizing makespan or resource availability cost with a specified deadline. This problem assumes a fixed cost for the availability of each renewable resource per period, and the project cost to be minimized is the sum of the variable cost associated with the execution mode of each activity. The presented memetic algorithm (MA) consists of three features: (1) a truncated branch and bound heuristic that serves as effective preprocessing in forming the initial population; (2) a strategy that maintains two populations, which respectively store deadline-feasible and infeasible solutions, enabling the MA to explore quality solutions in a broader resource-feasible space; (3) a repair-and-improvement local search scheme that refines each offspring and updates the two populations. The MA is tested via ProGen generated instances with problem sizes of 18, 20, and 30. The experimental results indicate that the MA performs exceptionally well in both effectiveness and efficiency using the optimal solutions or the current best solutions for the comparison standard.

      • SCOPUSKCI등재

        A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling

        Fang, Ying-Chieh,Chyu, Chiuh-Cheng Korean Institute of Industrial Engineers 2009 Industrial Engineeering & Management Systems Vol.8 No.3

        Population learning algorithm (PLA) is a population-based method that was inspired by the similarities to the phenomenon of social education process in which a diminishing number of individuals enter an increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project makespan and renewable resource availability, which are two most common concerns of management when a project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules for the management to make a choice. Different improvement schemes and learning procedures are applied at different stages of the process. The process gradually becomes more and more sophisticated and time consuming as there are less and less individuals to be taught. An experiment with ProGen generated instances was conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric does not reveal any significant difference between these five looping algorithms.

      • KCI등재후보

        A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling

        Ying-Chieh Fang,Chiuh-Cheng Chyu 대한산업공학회 2009 Industrial Engineeering & Management Systems Vol.8 No.3

        Population learning algorithm (PLA) is a population-based method that was inspired by the similarities to the phenomenon of social education process in which a diminishing number of individuals enter an increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project makespan and renewable resource availability, which are two most common concerns of management when a project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules for the management to make a choice. Different improvement schemes and learning procedures are applied at different stages of the process. The process gradually becomes more and more sophisticated and time consuming as there are less and less individuals to be taught. An experiment with ProGen generated instances was conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric does not reveal any significant difference between these five looping algorithms.

      • SCOPUSKCI등재

        A Dual-Population Memetic Algorithm for Minimizing Total Cost of Multi-Mode Resource-Constrained Project Scheduling

        Chen, Zhi-Jie,Chyu, Chiuh-Cheng Korean Institute of Industrial Engineers 2010 Industrial Engineeering & Management Systems Vol.9 No.2

        Makespan and cost minimization are two important factors in project investment. This paper considers a multi-mode resource-constrained project scheduling problem with the objective of minimizing costs, subject to a deadline constraint. A number of studies have focused on minimizing makespan or resource availability cost with a specified deadline. This problem assumes a fixed cost for the availability of each renewable resource per period, and the project cost to be minimized is the sum of the variable cost associated with the execution mode of each activity. The presented memetic algorithm (MA) consists of three features: (1) a truncated branch and bound heuristic that serves as effective preprocessing in forming the initial population; (2) a strategy that maintains two populations, which respectively store deadline-feasible and infeasible solutions, enabling the MA to explore quality solutions in a broader resource-feasible space; (3) a repair-and-improvement local search scheme that refines each offspring and updates the two populations. The MA is tested via ProGen generated instances with problem sizes of 18, 20, and 30. The experimental results indicate that the MA performs exceptionally well in both effectiveness and efficiency using the optimal solutions or the current best solutions for the comparison standard.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼