RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads

        Buntara S. Gan,Thanh-Huong Trinh,Thi-Ha Le,Dinh-Kien Nguyen 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.53 No.5

        This paper presents a finite element procedure for dynamic analysis of non-uniform Timoshenko beams made of axially Functionally Graded Material (FGM) under multiple moving point loads. The material properties are assumed to vary continuously in the longitudinal direction according to a predefined power law equation. A beam element, taking the effects of shear deformation and cross-sectional variation into account, is formulated by using exact polynomials derived from the governing differential equations of a uniform homogenous Timoshenko beam element. The dynamic responses of the beams are computed by using the implicit Newmark method. The numerical results show that the dynamiccharacteristics of the beams are greatly influenced by the number of moving point loads. The effects of thedistance between the loads, material non-homogeneity, section profiles as well as aspect ratio on the dynamic responses of the beams are also investigated in detail and highlighted.

      • SCIESCOPUS

        Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads

        Gan, Buntara S.,Trinh, Thanh-Huong,Le, Thi-Ha,Nguyen, Dinh-Kien Techno-Press 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.53 No.5

        This paper presents a finite element procedure for dynamic analysis of non-uniform Timoshenko beams made of axially Functionally Graded Material (FGM) under multiple moving point loads. The material properties are assumed to vary continuously in the longitudinal direction according to a predefined power law equation. A beam element, taking the effects of shear deformation and cross-sectional variation into account, is formulated by using exact polynomials derived from the governing differential equations of a uniform homogenous Timoshenko beam element. The dynamic responses of the beams are computed by using the implicit Newmark method. The numerical results show that the dynamic characteristics of the beams are greatly influenced by the number of moving point loads. The effects of the distance between the loads, material non-homogeneity, section profiles as well as aspect ratio on the dynamic responses of the beams are also investigated in detail and highlighted.

      • KCI등재

        Modeling of the ITZ zone in concrete: Experiment and numerical simulation

        Yanuar Setiawan,Buntara S. Gan,Ay Lie Han 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.6

        The discovery of the Interfacial Transition Zone (ITZ) by Farran in 1956 initiated a new era in the study of the behaviour of concrete. Acknowledged as the weak link, this ITZ was studied extensively, numerically as well as experimentally. While the complementary experimental tests illustrated the visual behaviour of this specimen under increasing monotonic compression loading, a perfect bond within the ITZ has also been studied by using finite element analysis for comparison purposes. Finite element analysis was used to evaluate the degree of correctness and precision of the proposed ITZ model. This paper discusses the use of the cutoff bar in finite element modeling, representing the ITZ of a single aggregate (inclusion) in a mortar matrix. Experiments were conducted to investigate the influence of the ITZ model on the single inclusion specimen’s strength. The model was tested for some inclusions that varied in dimension and shape. The effect of inclusion shape on the stress concentrations of the specimens was examined. The aim of this research work is to propose a simple yet accurate ITZ model to be used in the commercially available finite element software packages.

      • KCI등재

        Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

        Dinh-Kien Nguyen,Buntara S. Gan,Thanh-Huong Trinh 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.6

        Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

      • SCIESCOPUS

        Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

        Nguyen, Dinh-Kien,Gan, Buntara S.,Trinh, Thanh-Huong Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.6

        Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

      • KCI등재

        Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation

        Thanh-Huong Trinh,Dinh-Kien Nguyen,Buntara S. Gan,S. Alexandrov 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.58 No.3

        The elastoplastic response of functionally graded material (FGM) beams resting on a nonlinear elastic foundation to an eccentric axial load is investigated by using the finite element method. The FGM is assumed to be formed from ceramic and metal phases with their volume fraction vary in the thickness direction by a power-law function. A bilinear elastoplastic behavior is assumed for the metallic phase, and the effective elastoplastic properties of the FGM are evaluated by Tamura-Tomota-Ozawa (TTO) model. Based on the classical beam theory, a nonlinear finite beam element taking the shift in the neutral axis position into account is formulated and employed in the investigation. An incremental-iterative procedure in combination with the arc-length control method is employed in computing the equilibrium paths of the beams. The validation of the formulated element is confirmed by comparing the equilibrium paths obtained by using the present element and the one available in the literature. The numerical results show that the elastoplastic post-buckling of the FGM beams is unstable, and the post-buckling strength is higher for the beams associated with a higher ceramic content. Different from homogeneous beams, yielding in the FGM beam occurs in the layer near the ceramic layer before in the layer near metal surface. A parametric study is carried out to highlight the effect of the material distribution, foundation support and eccentric ratio on the elastoplastic response of the beams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼