RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Superior adsorption and photodegradation of eriochrome black-T dye by Fe3+ and Pt4+ impregnated TiO2 nanostructures of different shapes

        Bonamali Pal,Rupinder Kaur,Inderpreet Singh Grover 한국공업화학회 2016 Journal of Industrial and Engineering Chemistry Vol.33 No.-

        This article highlights comparative adsorption behavior and photocatalytic activity of TiO2nanostructures (P25, nanorods and nanotubes) for degradation of eriochrome black-T dye (EBT)depending on their structural morphology and metal ions (Fe3+ and Pt4+) deposition. Enhancement inadsorption capacity (qmax) was observed due to impartment of extra positive charges by Fe3+ and Pt4+impregnation and follow the order, Pt4+–P25–TiO2 (400 mg/mg) > Fe3+–P25–TiO2 (344 mg/mg) > P25–TiO2 (248 mg/mg) > nanotubes (123 mg/mg) > nanorods (69 mg/mg). The Fe3+ and Pt4+ loaded TiO2improved dye adsorption and degradation rate of EBT undergoing complete minerization to CO2 underUV light irradiation.

      • KCI등재

        Influence of Oxidative Etching of Au Nanostructures by KMnO4 on its Surface Morphology, Electro-kinetic Properties and Improved Catalytic Activity

        Bonamali Pal,Anila Monga 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.31 No.-

        This paper reports the impact of oxidative etching of Au nanospheres and nanorods by KMnO4 on theirsurface morphology, electro-kinetic properties and catalytic activity. A significant blue-shift of thesurface plasmon bands for Au nanospheres (536 to 527 nm) and Au nanorods (679 to 532 nm) wereobserved, due to their size and shape alterations after oxidative dissolution. TEM analysis also revealedthe formation of various irregular Au nano-morphologies such as spheres ( 4-7 nm), low aspect ratiorods (2.6) and spheroids ( 13 nm) of narrow size distribution after KMnO4 etching. As a result, thehydrodynamic diameter of Au nanospheres ( 41 nm) and Au nanorods ( 109 nm) were reduced to4 nm and 34 nm, respectively. The oxidative dissolution of Au0 by KMnO4 occurred via its oxidation toAu3+ ions as confirmed by the measured electrode potential, E0(Au0/Au3+) = -0.90 V by cyclic voltammetrywith significant increase in the zeta potential and conductance values. The etched Au nanoparticlesbeing smaller in size and of higher surface to volume ratio resulted in 2 fold higher catalytic activitiesfor the reduction of p-nitrophenol and p-nitrobenzoic acid as compared to bare unetched Aunanostructures.

      • KCI등재

        Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation

        Aadil Bathla,Bonamali Pal 한국공업화학회 2018 Journal of Industrial and Engineering Chemistry Vol.67 No.-

        Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous TiO2 leads to several surface modifications. The bimetallic PNT-3 (Pd3@Ni1/mTiO2) exhibited large surface area (212 m2 g−1), and low recombination rate of the charge carriers (e−-h+). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant k = 5.31 × 10−1 h−1 owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/mTiO2 interface.

      • KCI등재

        Influence of Ag/Cu photodeposition on CaTiO3 photocatalytic activity for degradation of Rhodamine B dye

        Manjusha Passi,Bonamali Pal 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.4

        The present work outlines a simple sol-gel method for the synthesis of CaTiO3 (CTO) nanoparticles followedby modification with Ag, Cu via photodeposition. Different amounts (1 to 5wt%) of Ag and Cu were loadedover CTO to form Ag/Cu-CTO nanocomposites. Several characterization techniques, such as XRD, UV-DRS, SEM,EDS, HRTEM and photoluminesence, were employed to study their structural and physicochemical properties. Thephotocatalytic performance of as-prepared samples was assessed by degrading Rhodamine B dye under UV irradiation. Results indicate that Ag/Cu deposition significantly enhanced the photocatalytic activity of CTO, depending uponthe amount of metal loading. It found that 1 wt% Ag-CTO composite exhibited the highest (98%) photoactivity within90 mins in contrast to 82% and 57% degradation achieved by 1 wt% Cu-CTO and bare CTO, respectively. The degradationprocess followed pseudo-first-order kinetics with rate constants of k=4.5×102 min1 for Ag-CTO relative tok=1.8×102 min1 of Cu-CTO and k=0.86×102 min1 of bare. The improved photocatalytic activity was credited to theincreased optical absorption and quick transfer of photoinduced electrons from CaTiO3 conduction band to Ag and Cudeposits that probably retards the charge-carriers recombination as evident by their observed photoluminance behavior.

      • KCI등재

        Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation

        Aadil Bathla,Bonamali Pal 한국공업화학회 2019 Journal of Industrial and Engineering Chemistry Vol.79 No.-

        Bimetallic nanostructures have gained immense importance owing to their enhanced co-catalyticeffect in improving photocatalytic activity of TiO2 for various applications relative to monometallicones. However, the use of bimetallic core@shell catalyst/nanocatalyst for hydrogenation ofimportant industrial organic is not much explored relative to conventional metal catalysts. Inthis respect, the present study demonstrated the synthesis of core@shell (Cu@Zn) nanostructurebased on their galvanic interactions. TEM analysis confirmed the formation of Cu@Zn nanoparticleswith a shell thickness of 195 nm. It was observed that with increasing Cu:Zn weight ratio (1:1, 2:1,and 3:1) the average hydrodynamic size increases from 198 to 267 nm. These Cu@Zn nanostructuresshowed superior co-catalytic activity after impregnation on (001) faceted titanium nanosheets(surface area = 72.8 m2 g 1) for the selective hydrogenation of quinoline under visible lightradiations. The optimized Cu@Zn(3:1)/TiO2 photocatalyst showed enhanced conversion, selectivity,and higher rate constant (k = 2.1 10 1 h 1) compared to Cu and Zn-TiO2 nanocomposites. Thesuperior activity of Cu@Zn-TiO2 photocatalyst was attributed to the synergistic interaction occurringat bimetallic-TiO2 interface which effectively promotes the transfer of electron and hydride (H ) forquinoline hydrogenation. The conventional hydrogenation of quinoline required high temperature,solvents, expensive bases and involved multistep procedure. Therefore, the use of Cu@Zn-TiO2photocatalyst might be a greener approach for the selective hydrogenation of industrial importantunsaturated organic compounds under light radiations.

      • KCI등재

        Impact of g-C3N4 loading on NiCo LDH for adsorptive removal of anionic and cationic organic pollutants from aqueous solution

        Harpreet Kaur,Satnam Singh,Bonamali Pal 한국화학공학회 2021 Korean Journal of Chemical Engineering Vol.38 No.6

        Layered double hydroxides are traditional positively charged inorganic materials generally considered as efficient and low-cost adsorbents for the removal of anionic organic molecules. In this study, we prepared a series of g- C3N4@NiCo LDH composites by loading 10-30 wt% of g-C3N4 onto the LDH through the electrostatic self-assembly method. The bare LDH and g-C3N4 loaded LDH composites were characterized by XRD, SEM-EDS, Zeta, DLS, and FTIR techniques. Results revealed that extra peak corresponds to g-C3N4 originating in the XRD patterns, distorted morphology of LDH, reduction in positive surface zeta potential, and enhancement in hydrodynamic size after loading of g-C3N4 affirmed the successful formation of the composite. The adsorption performance of as-modified LDH was evaluated by removing the most commonly used salicylic acid and methylene blue as anionic and cationic model pollutant, respectively, from aqueous solution. The adsorption mechanism for both the pollutants by as-synthesized samples follows Langmuir isotherm. The results demonstrated that the bare LDH exhibited maximum adsorption efficiency of 75.16mg/g and only 3.66mg/g for salicylic acid and methylene blue, respectively. With 30 wt% loading of g- C3N4, the adsorption capacity for methylene blue increased to 25.16mg/g almost 6-7 times higher than that of bare LDH. On the other hand, the opposite effect on adsorptive removal of salicylic acid was observed with increase in the wt% loading of g-C3N4. With 30 wt% loading of g-C3N4, the adsorption capacity for salicylic acid decreased to 38.37mg/g, almost half that of bare LDH. A possible mechanism has been proposed. The kinetics for adsorption of salicylic acid onto bare LDH obeys the second-order model aside from the methylene blue adsorption which follows first-order kinetics. On the other hand, the kinetics of adsorption for both the pollutants onto (10-30) CN- LDH composites follows second order kinetics.

      • KCI등재

        Tuning the band energetics of size dependent titania nanostructures for improved photo-reductive efficiency of aromatic aldehydes

        Manpreet Kaur Aulakh,Bonamali Pal 한국공업화학회 2019 Journal of Industrial and Engineering Chemistry Vol.80 No.-

        Mono-dispersed and smaller sized TiO2 nanospheres (~8 nm and ~20 nm) exhibited superior photo-reductive efficiency for few aromatic aldehydes under UV light. It has been found that pnitrobenzaldehydeand benzaldehyde are efficiently reduced to p-aminobenzyl alcohol (80% and 61%)and benzyl alcohol (59% and 38%) by 8 nm and 20 nm particles respectively, relative to negligiblereduction by TiO2 (P25) under same experimental conditions. However, the successful photo-reductionof p-nitrotoluene (97%) was observed with P25 whose reduction potential ( 0.5 eV) lies below theconduction band (CB,0.85 eV vs NHE) of the catalyst. Thesefindings can be explained on the basis ofunsuitable and mismatched CB of P25 with respect to the lowest unoccupied molecular orbital ofCHOgroup to access its photo-activity. However, this hydrogenation occurred by synthesized smaller sizedTiO2 particles (~8 nm and~20 nm) due to their favorable band gap (3.85 eV and 3.62 eV) and conductionband edge ( 0.61 eV and0.50 eV). Moreover, the other physio-chemical characteristics of 8 nm and20 nm sized particles such as surface area (323 m2 g 1 and 297 m2 g 1), higher charge carrier relaxationtime (61 ms and 40 ms) are also co-related for ease of photo-activity relative to TiO2 (P25).

      • KCI등재

        Phase-dependent thermophysical properties of a-and g-Al2O3 in aqueous suspension

        Bhupender Pal,Soumya Suddha Mallick,Bonamali Pal 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.25 No.-

        This study demonstrates the thermal conductivity (TC) and viscosity of as prepared crystalline a-Al2O3 and amorphous g-Al2O3 particles, having size in the range of 30–50 nm. The a and g-Al2O3 aqueous suspension exhibited 10% and 6% enhancement in TC than de-ionized water, but a-Al2O3 showed (4–6%) higher TC than g-Al2O3 aqueous suspension due to more crystallinity of a phase than g phase. Ultrasonication helps in the breakdown of large clusters which further improves the dispersion stability and TC as verified by dynamic light scattering and zeta potential measurements. The Al2O3 aqueous suspension showed Newtonian characteristics at lower concentration.

      • KCI등재

        Core–shell morphology of Au-TiO2@graphene oxide nanocomposite exhibiting enhanced hydrogen production from water

        Rayees Ahmad Rather,Satnam Singh,Bonamali Pal 한국공업화학회 2016 Journal of Industrial and Engineering Chemistry Vol.37 No.-

        The core–shell morphology of graphene oxide (GO) coated Au-TiO2 (Au-TiO2@GO) nanocatalysts hasdisplayed enhanced photocatalytic activity for hydrogen production from water. The structuralmorphology of Au-TiO2@GO revealed a thin layer ( 2.5 nm) of GO shell over Au-TiO2 core, possessinghigher specific surface area ( 100 m2 g 1). Raman spectroscopy revealed bands at 1593 cm 1 and1317 cm 1 corresponding to G and D lines. GO facilitates decreases in the rate of e /h+ recombinationdue to its reduction potential and Au loading increase sensitization of TiO2 in the visible light resulting inthe increased activity for H2 production ( 114 mmol) from the water.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼