RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Optimum design of steel bridges including corrosion effect using TLBO

        Artar, Musa,Catar, Recep,Daloglu, Ayse T. Techno-Press 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.5

        This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems.

      • KCI등재

        Optimum design of braced steel frames via teaching learning based optimization

        Musa Artar 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.22 No.4

        In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching.learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISCASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

      • KCI등재

        Optimum design of steel space truss towers under seismic effect using Jaya algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.71 No.1

        This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

      • KCI등재

        Optimum design of steel bridges including corrosion effect using TLBO

        Musa Artar,Recep Catar,Ayse T. Daloglu 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.5

        This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems.

      • KCI등재

        Optimum design of steel space frames under earthquake effect using harmony search

        Musa Artar 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.58 No.3

        This paper presents an optimization process using Harmony Search Algorithm for minimum weight of steel space frames under earthquake effects according to Turkish Earthquake Code (2007) specifications. The optimum designs are carried out by selecting suitable sections from a specified list including W profiles taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC- Load and Resistance Factor Design (LRFD) specifications, lateral displacement constraints and geometric constraints are considered in the optimum designs. A computer program is coded in MATLAB for the purpose to incorporate with SAP2000 OAPI (Open Application Programming Interface) to perform structural analysis of the frames under earthquake loads. Three different steel space frames are carried out for four different seismic earthquake zones defined in Turkish Earthquake Code (2007). Results obtained from the examples show the applicability and robustness of the method.

      • KCI등재

        A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.73 No.2

        The effect of soil foundation plays active role in optimum design of steel space frames when included. However, its influence on design can be calculated after a long iterative procedure. So it requires longer computer time and more computational effort if it is done properly. The main purpose of this study is to investigate how these effects can be calculated in more practical way in a shorter time. The effects of semi-rigid column bases are taken into account in optimum design of steel space frames. This study is carried out by using JAYA algorithm which is a novel and practical method based on a single revision equation. The displacement, stress and geometric size constraints are considered in the optimum design. A computer program is coded in MATLAB to achieve corporation with SAP2000-OAPI (Open Application Programming Interface) for optimum solutions. Four different steel space frames including soil structure interaction taken from literature are investigated according to different semi-rigidly supported models depending on different rotational stiffness values. And the results obtained from analyses are compared with the results available in reference studies. The results of the study show that semi-rigidly supported systems in the range of appropriate rotational stiffness values offer practical solutions in a very short time. And close agreement is obtained with the studies on optimum design of steel space frames including soil effect underneath.

      • KCI등재

        Optimum design of steel frames with semi-rigid connections and composite beams

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.55 No.2

        In this paper, an optimization process using Genetic Algorithm (GA) that mimics biological processes is presented for optimum design of planar frames with semi-rigid connections by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints as indicated in AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), maximum lateral displacement constraints and geometric constraints are considered for optimum design. Two different planar frames with semi-rigid connections taken from the literature are carried out first without considering concrete slab effects in finite element analyses and the results are compared with the ones available in literature. The same optimization procedures are then repeated for full and semi rigid planar frames with composite (steel and concrete) beams. A program is developed in MATLAB for all optimization procedures. Results obtained from this study proved that consideration of the contribution of the concrete on the behavior of the floor beams provides lighter planar frames.

      • KCI등재

        Optimum design of steel space frames with composite beams using genetic algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.19 No.2

        This paper presents an optimization process using Genetic Algorithm (GA) for minimum weight by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), lateral displacement constraints being the top and inter-storey drift, mid-span deflection constraints for the beams and geometric constraints are considered for optimum design by using GA that mimics biological processes. Optimum designs for three different space frames taken from the literature are carried out first without considering concrete slab effects in finite element analyses for the constraints above and the results are compared with the ones available in literature. The same optimization procedures are then repeated for the case of space frames with composite (steel and concrete) beams. A program is coded in MATLAB for the optimization processes. Results obtained in the study showed that consideration of the contribution of the concrete on the behavior of the floor beams results with less steel weight and ends up with more economical designs.

      • KCI등재

        A comparative study on optimum design of multi-element truss structures

        Musa Artar 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.22 No.3

        A Harmony Search (HS) and Genetic Algorithms (GA), two powerful metaheuristic search techniques, are used for minimum weight designs of different truss structures by selecting suitable profile sections from a specified list taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB interacting with SAP2000-OAPI to obtain solution of design problems. The stress constraints according to AISC-ASD (Allowable Stress Design) and displacement constraints are considered for optimum designs. Three different truss structures such as bridge, dome and tower structures taken from literature are designed and the results are compared with the ones available in literature. The results obtained from the solutions for truss structures show that optimum designs by these techniques are very similar to the literature results and HS method usually provides more economical solutions in multi-element truss problems.

      • KCI등재

        Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.19 No.4

        A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼