RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The Need for Weight Optimization by Design of Rolling Stock Vehicles

        Ainoussa, Amar The Korean Society for Railway 2009 International Journal of Railway Vol.2 No.3

        Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

      • The Need for Weight Optimization by Design of Rolling Stock Vehicles

        Amar Ainoussa 한국철도학회 2009 International Journal of Railway Vol.2 No.3

        Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimised strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: ? material selection to best contribute to the intended functionality and performance ? design and design optimization to secure the intended functionality and performance ? weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against fire and smoke, small and large composite materials made components are also found in greater quantities in today’s railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an “overdesigned” bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

      • An overview of the structural requirements of passenger carrying rolling stock according to EN12663 and prEN15227

        아마르(AMAR AINOUSSA),장대성(D.S Chang),백진성(J.S Paik) 한국철도학회 2007 한국철도학회 학술발표대회논문집 Vol.- No.-

        As the South Korean rolling stock industry is developing designs for full compliance with the European Standards, it is fitting to take a look at these two core standards. The paper presents an overview of the load cases and structural requirements developed in Europe for the design of safe and compatible rolling stock vehicles. These load cases and structural requirements have been compiled into two standards namely EN12663 and EN15227. Standard EN12663 was developed as a reference design requirements standard. The work was mandated and sponsored by the European Committee for Standardization and Standard issuing National Institutions. EN12663 specifies a series of proof and fatigue load cases for European rolling stock regulations compliant vehicle designs. As EN12663 does not address the crashworthiness issue, a dedicated crashworthiness standard, EN15227, was therefore developed in a similar manner through industry wide consultations managed by a Trans-European working group of experienced engineers and specialists. In both standards, the vehicle and/or trains are grouped into categories reflecting the vehicle types and/or their indented operational function. EN15227, developed to complement EN12663, addresses the "passive" crashworthiness capability of the vehicles and trains. EN15227 specifies reference crash scenarios similar to those found in the Technical Specification for Interoperability (TSI) of high speed trains operating in Europe. The overview also touches on a general comparison with the corresponding British Group Standard (GM/RT2100) and also the UIC leaflet based load cases. The exercise is extended to pertinent design load cases specified by the Federal Railroad Administration (FRA) in the US.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼