RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Oscillation of Second-Order Nonlinear Forced Functional Dynamic Equations with Damping Term on Time Scales

        Agwa, Hassan Ahmed,Khodier, Ahmed Mahmoud,Ahmed, Heba Mostaafa Atteya Department of Mathematics 2016 Kyungpook mathematical journal Vol.56 No.3

        In this paper, we establish some new oscillation criteria for the second-order forced nonlinear functional dynamic equations with damping term $$(r(t)x^{\Delta}(t))^{\Delta}+q({\sigma}(t))x^{\Delta}(t)+p(t)f(x({\tau}(t)))=e(t)$$, and $$(r(t)x^{\Delta}(t))^{\Delta}+q(t)x^{\Delta}(t)+p(t)f(x({\sigma}(t)))=e(t)$$, on a time scale ${\mathbb{T}}$, where r(t), p(t) and q(t) are real-valued right-dense continuous (rd-continuous) functions [1] defined on ${\mathbb{T}}$ with p(t) < 0 and ${\tau}:{\mathbb{T}}{\rightarrow}{\mathbb{T}}$ is a strictly increasing differentiable function and ${\lim}_{t{\rightarrow}{\infty}}{\tau}(t)={\infty}$. No restriction is imposed on the forcing term e(t) to satisfy Kartsatos condition. Our results generalize and extend some pervious results [5, 8, 10, 11, 12] and can be applied to some oscillation problems that not discussed before. Finally, we give some examples to illustrate our main results.

      • Improving the brittle behaviour of high-strength concrete using keratin and glass fibres

        Abdelsamie, Khaled,Agwa, Ibrahim Saad,Tayeh, Bassam A.,Hafez, Radwa Defalla Abdel Techno-Press 2021 Advances in concrete construction Vol.12 No.6

        Keratin fibres are waste products of the poultry industry. Natural materials made from chicken feather fibres (CFFs) are used in concrete-reinforced composites in this study. Brittleness is a major problem of high-strength concrete (HSC) that leads to sudden failure at the ultimate capacity of concrete. Hence, this work aims to investigate effects of using CFFs on improving the brittle behaviour of HSC. Two scenarios are performed to analyse the effectiveness of using CFFs. HSC containing different ratios of CFF (0% as the control, 0.5%, 1%, 1.5%, 2%, and 3%) by volume are tested in the first scenario. Glass fibres (GF) are used to replace CFFs in the other scenario. Tests of fresh, hardened and morphological properties for concrete are performed. Results showed the enhanced brittle behaviour of HSC when using both types of fibres. The preferable ratio of both types of fibres is 1% by volume. Flexural and splitting tensile strengths increased by about 44.9 % and 42.65 % for mixes containing 0.1% GF, respectively. While they were increased by about 21.6 % and 21.16 % for mixes containing 0.1% CFF, respectively.

      • KCI등재

        Upgraded Mechanical Properties of Diluent Nano-filled Glass/Epoxy Composites Fabricated by Vacuum Assisted Resin Infusion

        M. Megahed,Sherif M. Youssef,Soliman S. Ali-Eldin,M. A. Agwa 한국섬유공학회 2021 Fibers and polymers Vol.22 No.4

        Vacuum Resin Infusion process (VRI) is the most common method for the manufacturing of composite laminates. Unfortunately, VRI has some disadvantages such as incomplete filling of the mold and poor impregnation due to the highviscosity of the nano-polymeric resin. The high viscosity of nano-polymeric resin consumes a lot of time to complete theprocess. In this study, an attempt was done to decrease the viscosity of the epoxy and nanophase epoxy hence decreasing theprocessing time. Ethanol was added with small weight fractions (0.5 wt.% and 1 wt.%) to the epoxy resin withoutevaporation to decrease its viscosity. Moreover, TiO2 nanoparticles with 0.25 wt.% and 0.5 wt.% were added to epoxy resin toproduce nano-filled glass fiber/epoxy composites. Two types of glass fiber reinforcements were used which are eitherchopped or woven glass fabric. The results showed that, as the ethanol percentage increases, the resin viscosity decreases andconsequently the processing time. Adding 1 wt.% of ethanol and 0.25 wt.% of TiO2 nanoparticles to epoxy resin slightlyincreases tensile strength as compared with neat chopped glass fiber/epoxy composites. The tensile strength of woven glassfiber/epoxy and the flexural properties of both woven and chopped glass fiber reinforced epoxy improved significantly withthe addition of 0.5 wt.% of ethanol and 0.25 wt.% of TiO2 nanoparticles.

      • KCI등재후보

        Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete

        Mohamed Amin,Abdullah M. Zeyad,Bassam A. Tayeh,Ibrahim Saad Agwa 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.80 No.2

        Heavyweight geopolymer concrete (HWGC) is a new concrete type that combines the benefits of geopolymer concrete (GC) and heavyweight concrete. HWGC can be used to produce particular properties such as high radiation shielding, and mass concrete elements. HWGC based on fly ash and ground granulated blast furnace slag, using electric arc furnace steel slag (EAFSS), barite and ilmenite coarse aggregates can substantially have higher specific gravities than concrete made with crushed dolomite. In the experimental work carried out on four main groups, 13 GC mixes are prepared by using heavyweight coarse aggregates (HWCAs) at volume ratios of 0%, 25%, 50%, 75% and 100%. Fresh and mechanical properties, compressive and tensile strengths, and influence of high temperature on radiation are investigated for specimens subjected to high temperatures of up to 900°C for 1, 2 and 3 hours. Moreover, the internal structure of geopolymer is analyzed using scanning electron microscope and energy-dispersive X-ray. Results show a good effect of HWCAs on the properties, radiation shielding and unit weight. The density of heavyweight geopolymer mixes ranges between 2,415 and 3,480 kg/m3, and HWCA ratios contribute to an increase in all properties of GC mixtures using up to 75% of NWCAs. Heavier coarse aggregate of ilmenite dampens the effect of higher temperatures on GC strength compared with lighter aggregates. In addition, replacing crushed dolomite with heavyweight aggregates of EAFSS, barite and ilmenite increases the attenuation rate to 27%, 21% and 13%, respectively. This finding confirms that the type of aggregate used in the production of GC is important for reducing the permeability of X-ray.

      • KCI등재

        Mechanical and Thermal Characteristics of Optimized Electrospun Nylon 6,6 Nanofibers by Using Taguchi Method

        Saleh S. Abdelhady,Said H. Zoalfakar,M. A. Agwa,Ashraf A. Ali 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.11

        This study is an attempt to optimize the electrospinning process to produce minimum Nylon 6,6 nanofibers by using Taguchi statistical technique. Nylon 6,6 solutions were prepared in a mixture of formic acid (FA) and Dichloromethane (DCM). Design of experiment by using Taguchi statistical technique was applied to determine the most important processing parameters influence on average fiber diameter of Nylon 6,6 nanofiber produced by electrospinning process. The effects of solvent/nylon and FA/DCM ratio on average fiber diameter were investigated. Optimal electrospinning conditions were determined by using the signal-to-noise (S/N) ratio that was calculated from the electrospun Nylon 6,6 nanofibers diameters according to "the-smaller-the-better" approach. The optimum Nylon 6,6 concentration (NY%) and FA/DCM ratio were determined. The morphology of electrospun nanofibers is significantly altered by FA/DCM solvent ratio as well as Nylon 6,6 concentration. The smallest diameter and the narrowest diameter distribution of Nylon 6,6 nanofibers (166 ffi 33 nm) were obtained for 10 wt% Nylon 6,6 solution in 80 wt% FA and 20 wt% DCM. An increase of 118%, 280% and 26% in tensile strength, modulus of elasticity and elongation at break over as-cast was obtained, respectively. Glass transition temperature of Nylon 6,6 nanofibers were determined by using differential scanning calorimeter (DSC). Analysis of variance ANOVA shows that NY% is the most influential parameter.

      • Effect of horizontal joints on structural behavior of sustainable self-compacting reinforced concrete beams

        Ibrahim, Omar Mohamed Omar,Heniegal, Ashraf Mohamed,Ibrahim, Khamis Gamal,Agwa, Ibrahim Saad Techno-Press 2020 Advances in concrete construction Vol.10 No.5

        This study investigated the effect of horizontal casting joints on the mechanical properties and structural behavior of sustainable self-compacting reinforced concrete beams (SCRCB). The experimental research consisted of two stages. The first stage used four types of concrete mixtures which were produced to indicate the effects of cement replaced with cement waste at 0%, 5%, 10%, and 15% by weight of cement content on fresh concrete properties of self-compacting concrete (SCC) such as, passing ability, filling ability, and segregation resistance. In addition, mechanical properties such as compressive, tensile, and flexural strength were also studied. The second stage selected the best mixture from the first stage and studied the effect of horizontal casting joints on the structural behavior of sustainable SCRCBs. The effect of horizontal casting joints on the mechanical properties and structural behavior were at the 25%, 50%, 75%, and 100% of sample height. Load deflection, failure mode, and theoretical analysis were studied. Results indicated that the incorporation of replacement with cement waste by 5% to 10% led to economic and environmental advantages, and the results were acceptable for fresh and mechanical properties. The results indicated that delaying the time for casting the second layer and increasing the cement waste in concrete mixtures had a great effect on the mechanical properties of SCC. The ultimate load capacity of horizontal casting joints reinforced concrete beams slightly decreased compared with the control beam. The maximum deflection of casting joint beams with 75% of samples height is similar with the control beam. The experimental results of reinforced concrete beams were substantially acceptable with the theoretical results. The failure modes obtained the best forced casting joint on the structural behavior at 50% height of casting in the beam.

      • Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

        Mohamed Amin,Ahmad A. Hakamy,Abdullah M. Zeyad,Bassam A. Tayeh,Ibrahim Saad Agwa 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.1

        High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete’s engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼