RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        혼합폐수의 효율적인 처리를 위한 생물학적 처리공정 내의 미생물 군집 특성 분석

        손형식(Hyeng-Sik Son),희종(Hee-Jong Son),이상준(Sang-Joon Lee) 한국생물공학회 2013 KSBB Journal Vol.28 No.3

        Depending on season, mixed wastewater can show great deviations in terms of the influent ratios of tannery and seafood-wastewater. Increases in the ratio of tannery wastewater in influent water also result in increases in the concentration of chromium, which decreases the ratio of BOD/T-N so that the removal efficiency of organic and nitrogen pollutants in biological wastewater treatment deteriorates. No substantial differences occur in the ratios of Eubacteria/total bacteria as the ratio between tannery wastewater and seafood wastewater changes in the influent water. In contrast, the cell numbers and activities of Eubacteria and total bacteria significantly decline with increasing ratios of tannery wastewater in the influent water. Stable removal of organic and nitrogen pollutants by biological wastewater treatments leads to dominance of Proteobacteria groups in all biological treatment basins. In aeration and oxic basins, γ-Proteobacteria account for approximately 21% of the Eubacteria groups, at 1.9×10<SUP>9</SUP>~2.0×10<SUP>9</SUP> cells/mL, while in an anoxic basin, β-Proteobacteria account for approximately 19% of the Eubacteria groups, at 1.3×10<SUP>9</SUP> cells/mL. However, a substantial decline in dominance of approximately 11% occurs for γ-Proteobacteria in aeration and oxic basins and about 1% for β-Proteobacteria in an anoxic basin. Mixed wastewater that undergoes extensive property changes of the influent water shows an efficiency of biological treatment that is greatly influenced by the ratio of dominant Proteobacteria groups.

      • KCI등재

        BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가

        손형식 ( Hyeng Sik Son ),정철우 ( Chul Woo Jung ),최영익 ( Young Ik Choi ),이건 ( Gun Lee ),희종 ( Hee Jong Son ) 한국환경과학회 2014 한국환경과학회지 Vol.23 No.6

        In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and .90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were 2.1 μg·ATP/g·GAC and 3.3×108 cells/g·GAC, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon (BDOCtotal), BDOCslow and BDOCrapid were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (μATP = 0.73 day-1; μHPC = 1,74 day-1) and 78%∼87% slower in the bottom layer (μATP = 0.14 day-1; μHPC = 0.34 day-1). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

      • KCI등재

        FISH 기법을 이용한 생물활성탄 공정에서의 운전기간별 부착 박테리아 군집변화 분석

        손형식 ( Hyeng Sik Son ),희종 ( Hee Jong Son ),박근태 ( Geun Tae Park ),이상준 ( Sang Joon Lee ) 한국환경과학회 2013 한국환경과학회지 Vol.22 No.1

        The concentration of organic compounds was analyzed at each step of BAC process though BDOC_total/rapid/slow. Further, bacteria communities and biomass concentrations measured FISH and ATP methods were analyzed. The bed volume (BV) of steady state is different from that of based on assessment of organic compounds removal. Bed volumes in DOC, BDOCrapid and BDOC_total/slow removal at steady state were around 27,500 (185.8 day), 15,000 (101.4 day) and 32,000 (216.2 day), respectively. A biomass didn`t change after the bed volume reached 22,500 (152.0 day) according to analyzing ATP concentration of bacteria. The concentration of ATP was 2.14 μg/g in BV 22,500 (152.0 day). The total bacterial number was 4.01±0.4×10^7 cells/g at the bed volume 1,150 (7.8 day) (the initial operation) and the number of bacteria was 9.27±0.2×10^9 at the bed volume 58,560 395.7 day) that increased more than 200 times. Bacterial uptrend was reduced and bacterial communities were stabilized since BV 18,720 (126.5 day). When BV were 1,150 (7.8 day), 8,916 (60.2 day), 18,720 (126.5 day), 31,005 (209.5 day), 49,632 (335.3 day), 58,560 (395.7 day), a proportion of total bacteria for the Eubacteria were 60.1%, 66.0%, 78.4%, 82.0%, 81.3% respectively. γ-Proteobacteria group was the most population throughout the entire range. The correlation coefficient (r^2) between Eubacteria biomass and ATP concentration was 0.9448.

      • KCI등재

        생물학적 폐수처리 공정에서의 계절 및 유입수 성상 변화에 따른 미생물 군집 특성 변화

        손형식(Hyeng Sik Son),희종(Hee Jong Son),김미아(Mi A Kim),유은연(Eun Yeon Ryu),이건(Geon Lee),이상준(Sang Joon Lee) 大韓環境工學會 2010 대한환경공학회지 Vol.32 No.8

        실험기간 동안 생물학적 처리공정에서의 BOD와 COD의 제거율은 각각 83.1~98.6%, 67.2~85.2%였으며, 단위 공정별로 미생물 군집 변화에서는 가을과 겨울의 경우 호기조, 산소조 및 무산소조에서 전체적으로 비슷한 군집양상을 나타내었다. RRP 그룹의 경우는 무산소조에서 3배 정도 증가하여 DGGE 밴드결과에서 새로운 밴드들이 나타난 것과 일치하는 경향을 보였다. 또한 비슷한 분포를 나타내었지만, 가을엔 α-Proteobacteria가 우점하였고, 겨울엔 CF 그룹이 우점을 보였다. 봄에 분석한 DGGE와 FISH의 결과에서는 유입수의 성상변화에 따른 미생물의 군집 패턴이 가을과 겨울의 경우에 비해 완전히 다른 패턴을 보였으며, FISH 결과에서 others 그룹의 증가와 DGGE 밴드결과에서 새로운 밴드들이 나타난 것과 일치하는 경향을 보였다. Eubacteria는 1.7~7.6×10(9) cells/mL 정도를 보였으며, 전체적인 미생물 군집을 평가하는데 FISH와 DGGE는 매우 효과적이었고, 계절별 및 공정별 군집의 변화에 대해 유용한 평가가 가능하였다. The bacterial community structure in biological reactor in wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH). Samples were collected at different three points in wastewater treatment system. Through treatment processes, BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of was removal efficiency was 83.1~98.6%, 67.2~85.2% respectively. Microbial community of aerobic tank and oxic tank were similar but anoxic tank was different (RRP group was increased about tripple) by DGGE and FISH in sludge (2007 October and 2008 January). Samples in 2007 October and 2008 January were dominant α-Proteobacteria and CF group respectively. Sludge in 2008 April were different comparing former results dominant others as 65~80%. Others group was dominant. Eubacteria by FISH with the probe EUB338 was about 1.7~7.6×10(9) cells/mL. It could be successfully observed bacterial community in biological wastewater system.

      • KCI등재
      • KCI등재

        Sediment에서의 전기활성 박테리아 분포 특성

        손형식(Hyeng Sik Son),희종(Hee Jong Son),김미아(Mia Kim),이상준(Sang Joon Lee) 大韓環境工學會 2010 대한환경공학회지 Vol.32 No.12

        낙동강, 회동 및 기장에서 채집한 sediment의 미생물 군집을 FISH 분석을 통하여 조사한 결과, α 그룹, Acidobacter 그룹 및 Cyanobacter 그룹의 분포비율이 가장 높았으며 전체적으로 서로 유사한 분포 특성을 나타내었다. 각각의 sediment를 접종한 MFC 농화배양 이후의 coulombic yield는 낙동강, 회동 및 기장의 경우 각각 0.64 C, 0.50 C, 0.61 C로 나타났으며, 농화배양 완료 후의 미생물 군집분포는 β-Proteobacteria, γ-Proteobacteria, Acidobacter 그룹 및 Firmicutes 그룹이 농화배양 전보다 각각 45~90%, 50~90%, 40~80% 및 45~125% 정도 생체량이 증가한 것으로 나타났다. 농화배양이 끝난 후 16S rDNA를 이용한 미생물 동정결과에서, 낙동강 sediment를 주입한 MFC의 경우는 α-Proteobacteria의 속하는 Roseomonas sp., Azospillum sp.와 γ-Proteobacteria의 Frateuria sp., Dyella sp., Enterobacter sp.와 Deinococci 그룹의 Deinococcus sp.가 동정되었고, 기장 sediment는 α-Proteobacteria의 Azospillum sp.와 β-Proteobacteria의 Delftia sp., Ralstonia sp.와 γ-Proteobacteria의 Klebsiella sp.와 Deinococci 그룹의 Deinococcus sp.가 동정되었으며, 회동 sediment는 γ-Proteobacteria의 Pseudomonas sp., Klebsiella sp.와 Deinococci 그룹의 Deinococci sp.와 Actinobacteria 그룹의 Leifsonia sp.와 Bacilli 그룹의 Bacillus sp.가 동정되었다. Microbial fuel cells (MFC) were enriched using sediment Nakdong river, Hoidong river and protected water area in Gijang. The microbial community of sediment and enriched MFC was analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. α-Proteobacteria, Acidobacter and Cyanobactia group were dominant in sediment by FISH. The coulombs of the final 10 peak of the 3 MFC (Nakdong, Hoidong, Gijang) were 0.64 C, 0.50 C, 0.61 C, respectively. When MFCs were enriched by sediment, β-, γ-Proteobacteria, Acidobacter and Firmicutes group increased 45~90%, 50~90%, 40~80% and 45~125%, respectively. In results of 16S rDNA sequencing, Roseomonas sp., Azospillium sp., Frateuria sp., Dyella sp., Enterobacter sp. and Deinocossus were isolated from Nakdong river and Azospillium sp., Delftia sp., Ralstonia sp., Klebsiella sp. and Deinococcus sp. were isolated from protected water area in Gijang and Pseudomonas sp., Klebsiella sp., Deinococcus sp., Leifsonia sp. and Bacillus sp. were isolated from Hoidong river.

      • KCI등재

        활성슬러지내의 전기화학적활성 박테리아 분포 특성

        손형식(Hyeng-Sik Son),희종(Hee-Jong Son),김미아(Mia Kim),이상준(Sang-Joon Lee) 한국생물공학회 2011 KSBB Journal Vol.26 No.5

        Microbial fuel cell (MFC) wes enriched using sludge in wastewater treatment. The microbial community of activated sludge and enriched MFC were analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. Bacteroidetes group were pre-dominant in activated sludge by FISH. α group, γ group and Acintobacter group were dominant and they were similar to distribution. The average value of 10 peak of MFC is 0.44C. When MFC wase enriched by sludge, γ-Proteobacteria, Plantomycetes group increased 70% and 60%, respectively. In results of 16S rDNA sequencing, Sphiringomonas sp. was comprised in α proteobacteria and Enterobacter sp., Klebsiella sp., Acinetobacter sp., Bacillus sp. were comprised in γ proteobacteria and Chryseobacterium sp. was comprised in Flavobacteria were isolated from sludge.

      • KCI등재

        환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석

        손형식(Hyeng-Sik Son),이상준(Sang-Joon Lee),희종(Hee-Jong Son) 한국생물공학회 2013 KSBB Journal Vol.28 No.2

        The bacterial community structure in a biological reactor fed influent from a wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and in situ hybridization. Sludges were collected from three biological reactors (aerobic,oxic,and anoxic tanks) at the M wastewater treatment facility (WTF). The influent of the MWTF consisted of mixed tannery wastewater (40~65%) and seafood wastewater (35~60%). The treatment processes resulted in a removal efficiency for BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of 83.6~ 98.2% and 72.8~84.6%, respectively for tannery wastewater than for seafood wastewater resulted in greater survival of biomass in the biological reactors and a higher removal of BOD, COD, and T-N of about 8~18%. In contrast, addition of greater amounts of seafood wastewater decreased the amount of biomass in the bioreactors due to the increasing concentration of chromium from that wastewater and it also. The dominant bacterial species during the high seafood wastewater input period were Burkholderia cepacia (JX901049) and an uncultured bacterium (JF247555), while Pseudomonas geniculata (HQ256559) was dominant during the high tannery wastewater input period. Flavobacteriumsp. BF.107 (FM173271) and Hyphomicrobium zavarzinii (Y14306) were dominant under anoxic conditions.

      • KCI등재

        환경 생태학적 개념을 이용한 낙동강 하류의 에머지 비용-편익 평가

        정화숙,이석모,손형식,희종,Jung, Hwa-Sook,Lee, Seog-Mo,Son, Hyeng-Sik,Son, Hee-Jong 한국환경과학회 2013 한국환경과학회지 Vol.22 No.4

        The Nakdong River being used as drinking water sources for the Busan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. This study used emergy analysis method to evaluate ecological-economics of water treatment systems of D water treatment plant (WTP) where located in the downstream of the Nakdong River. The emergy methodology is a system evaluation tool that uses energy as the common currency to compare different resources on a common basis. Emergy yield ratio (EYR) and emergy sustainability index (EmSI) of D WTP were 1.16 and 0.18, respectively. It means not resources and sustainable system but consumer goods and not sustainable system. Ratio of emergy benefit to the purchaser (EBP) shows 2.7 times higher than economic costs. To change the weak water source and situations we need to diversity water intake.

      • KCI등재

        정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가

        희종 ( Hee Jong Son ),황영도 ( Young Do Hwang ),류동춘 ( Dong Choon Ryu ),정철우 ( Chul Woo Jung ),이건 ( Gun Lee ),손형식 ( Hyeng Sik Son ) 한국환경과학회 2014 한국환경과학회지 Vol.23 No.9

        A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%∼30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼