RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        에너지전달을 이용한 가시광 Light Source의 발광특성에 관한 연구

        구할본,김주승,김종욱,Gu, Hal-Bon,Kim, Ju-Seung,Kim, Jong-Uk 한국전기전자재료학회 2004 전기전자재료학회논문지 Vol.17 No.11

        Red organic electroluminescent (EL) devices based on tris(8-hydroxyquinorine aluminum) (Alq$_3$) doped with red emissive materials, 4-(dicyanomethylene)-2-t-butyl -6-(l,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB). poly(3-hexylthiophene) (P3HT). rubrene and 4-dicyanomethylene-2-methyl-6[2-(2,3.6.7-tetrahydro-lH,5H-benzo-[i,j]quinolizin-8yl)vinyl]-4H-pyran (DCM2) were fabricated for applying to the red light source, The photoluminescence (pL) intensities of red emissive materials doped in Alq$_3$ are limited by the concentration quenching with increasing the doping ratio and the doping concentration of DCJTB, DCM2, P3HT and rubrene measured at the maximum intensity showed 5, 1, 0.5 and 2 wt%, respectively. Time-resolved PL dynamic results showed that the PL lifetime of red emissive materials doped in Alq$_3$ were increased more than the value of material itself. It means that the efficient energy transfer occurred in the mixed state and Alq$_3$ is a suitable host materials for red emissive materials, The device which was used DCJTB as a dopant achieved the best result of the maximum luminance of 594 cd/$m^2$ at 15 V and showed the chromaticity coordinates of x=0,624, y=0,371.

      • KCI등재

        Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구

        구할본,김종욱,Gu, Hal-Bon,Kim, Jong-Uk 한국전기전자재료학회 2004 전기전자재료학회논문지 Vol.17 No.11

        The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

      • KCI등재

        표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성

        구할본,Gu, Hal-Bon 한국전기전자재료학회 2012 전기전자재료학회논문지 Vol.25 No.2

        We use UV(ultraviolet)-$O_3$ treatment to increase the surface area and porosity of $TiO_2$ films in dye-sensitized solar cells (DSSCs). After the UV-$O_3$ treatment, surface area and porosity of the $TiO_2$ films were increased, the increased porosity lead to amount of dye loading and solar conversion efficiency was improved. Field emission scanning electron microscopy images clearly showed that the nanocrystalline porosity of films were increased by UV-$O_3$ treatment. The Brunauer, Emmett, and Teller surface area of the $TiO_2$ films were increased from $0.71cm^2/g$ to $1.31cm^2/g$ by using UV-$O_3$ treatment for 20 min. Also, UV-$O_3$ treatment of $TiO_2$ films significantly enhanced their solar conversion efficiency. The efficiency of the films without treatment was 4.9%, and was increased to 5.6% by UV-$O_3$ treatment for 20 min. Therefore the process enhanced the solar conversion efficiency of DSSCs, and can be used to develop high sensitivity DSSCs.

      • 카본 나노파이버가 도핑된 리튬이온전지의 전기화학적 특성

        구할본(Gu, Hal-Bon) 한국신재생에너지학회 2011 한국신재생에너지학회 학술대회논문집 Vol.2011 No.11

        올리빈 구조의 LiFePO₄ 정극 활물질은 650?C에서 고상법으로 제조되었다. LiFePO₄의 전자전도도를 향상시키기 위하여 graphite nanofiber(GNF)를 각각 3wt%, 5wt%, 7wt%, 9wt% 첨가하여 LiFePO₄-C를 제조하였다. 제조된 분말의 입자 형태를 확인하기 위하여 X-ray diffraction(XRD)과 File Electronic Scaning Electromicroscopy(FE-SEM)를 측정하였다. XRD결과로부터 제조된 분말은 모두 순수한 결정 구조를 나타내었고 입자의 크기는 약 200nm였다. 5wt% GNF를 첨가한 LiFePO₄-C는 기타 첨가량에 비해 방전용량이 가장 높았다. 첫 사이클의 용량은 151.73mAh/g 나타났고 50 사이클 뒤에도 92% 이상을 유지하고 있었다. 첨가하지 않은 것에 비해 43% 증가하였다. LiFePO₄-C(3wt%), LiFePO₄-C(7wt%), LiFePO₄-C(9wt%)의 첫 사이클 방전용량은 각각 147.94mAh/g, 136.64mAh/g, 121.07mAh/g 나타났다. LiFePO₄-C(5wt%)에 비해 용량은 떨어쪘지만 순수한 LiFePO₄보다 많이 높았다. 임피던스 결과를 보면 기타 첨가량에 비해 LiFePO₄-C(5wt%)의 저항 제일 낮았다. 이는 충방전 결과와 일치하였다. graphite nanofiber의 첨가로 인하여 LiFePO₄ 정극 활물질의 전자전도도가 높아지고, 따라서 전기화학적 특성도 크게 향상되었다.

      • Electrochemical properties of metal salts polymer electrolyte for DSSC

        구할본(Gu, Hal-Bon),Zhao, Xing Guan,Jin, En Mei 한국신재생에너지학회 2011 한국신재생에너지학회 학술대회논문집 Vol.2011 No.11

        Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

      • KCI등재

        졸겔법에 의한 DSSC 광전극의 전기화학적 특성

        박아름,구할본,Park, A-Reum,Jin, En Mei,Gu, Hal-Bon 한국전기전자재료학회 2012 전기전자재료학회논문지 Vol.25 No.4

        In general, a photoelectrode in DSSC(dye sensitized solar cell) are fabricated by using the $TiO_2$ (Titanium dioxide) to realize high efficiency and the efficiency of DSSC is affected by the size, the shape and the property of $TiO_2$. We synthesized the crystalline $TiO_2$ by sol-gel method. In spite of many merits, only weakness for the sol-gel method is taking many process times. To solve this problem, we reduced the fabricating processes. The reduced process is the making process that is $TiO_2$ sol to $TiO_2$ powder with including of two heat treatment and two mixing. We could simplify the process by preparing $TiO_2$ sol to $TiO_2$ paste directly. As a result, DSSC fabrication process is simplified and we have obtained the efficiency best result 3.88% with $V_{OC}$=0.71 V, $J_{SC}=8.70\;mA/cm^{-2}$, and FF=62.37%, respectively.

      • KCI등재

        전기-광 변환소자 응용을 위한 적색 유기 EL 소자의 광변조 특성

        김주승,구할본,Kim, Ju-Seung,Gu, Hal-Bon 한국전기전자재료학회 2005 전기전자재료학회논문지 Vol.18 No.6

        We fabricated red organic light emitting diodes(OLEDs) utilizing tis(8-hydroxyquinoline) aluminum $(Alq_3)$ doped with $5\%$ of (4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran) (DCJTI) and investigated the driving and modulation characteristics for applying to the electro-optical conversion device. To improve the driving characteristics of red OLEDs, 3 V of offset voltage, which is equal to the turn on voltage, Is applied to the device. Offset voltage enhanced the optical EL output and reduced the rise time of EL waveforms of red OLEDs, and hence the cutoff frequency is increased with increasing applied voltage. The optical pulse of 100 MHz has been obtained from red OLEDs. Therefore, we confirmed that the red OLEDs can be applied to the fields of optical communication as an electro-optical conversion device.

      • KCI등재

        저온소성 TiO<sub>2</sub> 페이스트를 이용한 염료감응 태양전지의 특성 연구

        정유라,구할본,Jung, You-Ra,Jin, En Mei,Gu, Hal-Bon 한국전기전자재료학회 2013 전기전자재료학회논문지 Vol.26 No.5

        In this paper, we have developed a low temperature process to make two type of paste by using $TiO_2$ nanoparticles(P25). The interconnections between substrate and $TiO_2$ films or link between particles of free-binder paste(FP1, FP2, FP3) is very poor. Therefore, the Titanium(IV) isopropoxide was added to the TP paste to improve the interconnection. Electron transport time (${\tau}_t$) and recombination time (${\tau}_r$) are analyzed by IMPS (intensity-modulated photocurrent spectroscopy) and IMVS(Intensity-modulated photovoltage spectroscopy). In the results, ${\tau}_t$ of TP paste based DSSCs (about $4.3{\times}10^{-3}$) is faster than other samples. ${\tau}_r$ is longer from $2.7{\times}10^{-2}$ s of FP2 to $3.0{\times}10^{-2}$ s of TP. A solar conversion efficiency (DSSCs) of TP is 3.54% for an incident solar energy of 100 mW $cm^{-2}$(meanwhile, 2.70% for DSSCs with FP2). The conversion efficiency is increased by 1.3 times.

      • KCI등재

        DCM2와 Rubrene이 첨가된 발광층 위치에 따른 적색 OLED의 발광 특성

        정행윤,구할본,Jung, Haeng-Yun,Gu, Hal-Bon 한국전기전자재료학회 2011 전기전자재료학회논문지 Vol.24 No.8

        In this study, we have fabricated the red OLED (organic light emitting diode). The basic device structure is ITO/hole transporting layer, TPD(500 $\AA$)/red emitting layer, Alq3 doped with DCM2:rubrene(20 $\AA$)/electron transporting layer, Alq3(M) (500 $\AA$-M $\AA$)/LiF(15 $\AA$)/Al(1,000 $\AA$). The thickness of electron transporting layer(500 $\AA$-M $\AA$) changed 0, 20, 40, 60 $\AA$. Turn on voltage of the red OLED was 5 V, 6 V, 6.5 V and 7.5 V, respectively with electron transfer layer changed ratio. Luminance of red OLED was 4,504, 1,840, 1,490 and 1,130 cd/$m^2$, respectively. Optimized electron transfer layer position changed ratio of the red OLED was 0 $\AA$.

      • KCI등재

        TTIP를 이용한 저온소성용 TiO<sub>2</sub> 페이스트 최적화

        정유라,구할본,Jung, You-Ra,Jin, En Mei,Gu, Hal-Bon 한국전기전자재료학회 2013 전기전자재료학회논문지 Vol.26 No.8

        In this paper, the low-temperature sintering of $TiO_2$ is approached to solve the problem of high temperature sintering which decreases the interconnection between particles or between substrate and particle. $TiO_2$ paste is prepared with Titanium (IV) isopropoxide as the precursor material and calcinate at different conditions (low temperature). In the results, since the changing of temperature and time of sintering, crystalline phase do not change and the intensities of anatase, rutile phase are higher. At $110^{\circ}C$, 7 h sintering condition, crystalline size of anatase and rutile phase are the smallest which are 13.07 and 17.47 nm, respectively. In addition, the highest zeta potential is about 32.77 mV and the repulsive force increases thus leading to the best of the dispersion characteristics between $TiO_2$ particles. Futhermore, DSSCs at that condition exhibits the highest efficiency with the values of $V_{oc}$, $J_{sc}$, FF and ${\eta}$ are 0.69 V, $8.60mA\;cm^{-2}$, 67.93% and 4.06%, respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼