RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Modeling, Preparation, and Elemental Doping of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Garnet-Type Solid Electrolytes: A Review

        Cao, Shiyu,Song, Shangbin,Xiang, Xing,Hu, Qing,Zhang, Chi,Xia, Ziwen,Xu, Yinghui,Zha, Wenping,Li, Junyang,Gonzale, Paulina Mercedes,Han, Young-Hwan,Chen, Fei The Korean Ceramic Society 2019 한국세라믹학회지 Vol.56 No.2

        Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

      • KCI등재

        A Study on Surface Treatment for Rubber Materials with Low Friction Factor

        ( Xiang Xu Li ),( Ur Ryong Cho ) 한국고무학회 2016 엘라스토머 및 콤포지트 Vol.51 No.1

        Multi-Surface (MS) treatment is a new technique of surface treatment to reduce the static friction factor on the surface of rubber. MS treatments include 4 methods which names are MS-V (UV-irradiation on the rubber surface), MSM (doing the chemical reaction with double bond of rubber), MS-Q (dilution of rubber surface by silicone surfactant), and MS-P (coating and heating of rubber surface). The experiment and test of every MS-treatment had been carried out using acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), and chlorosulphonated rubber (CSM) as rubber materials. It had introduced the steps of every MS-treatment process and the result of the properties test. From the research, it was found that the best method was MS-V treatment because it suited all the samples and the effect was obviously.

      • SCIESCOPUSKCI등재

        Effect of fermented biogas residue on growth performance, serum biochemical parameters, and meat quality in pigs

        Xu, Xiang,Li, Lv-mu,Li, Bin,Guo, Wen-jie,Ding, Xiao-ling,Xu, Fa-zhi Asian Australasian Association of Animal Productio 2017 Animal Bioscience Vol.30 No.10

        Objective: This study investigated the effect of fermented biogas residue (FBR) of wheat on the performance, serum biochemical parameters, and meat quality in pigs. Methods: We selected 128 pigs (the mean initial body weight was $40.24{\pm}3.08kg$) and randomly allocated them to 4 groups (1 control group and 3 treatment groups) with 4 replicates per group and 8 pigs per pen in a randomized complete block design based on initial body weight and sex. The control group received a corn-soybean meal-based diet, the treatment group fed diets containing 5%, 10%, and 15% FBR, respectively (abbreviated as FBR5, FBR10, and FBR15, respectively). Every group received equivalent-energy and nitrogen diets. The test lasted 60 days and was divided into early and late stages. Blood and carcass samples were obtained on 60 d. Meat quality was collected from two pigs per pen. Results: During the late stage, the average daily feed intake and average daily gain of the treatment groups was greater than that of the control group (p<0.05). During the entire experiment, the average daily gain of the treatment groups was higher than that of the control group (p<0.05). Fermented biomass residue did not significantly affect serum biochemical parameters or meat quality, but did affect amino acid profiles in pork. The contents of Asp, Arg, Tyr, Phe, Leu, Thr, Ser, Lys, Pro, Ala, essential amino acids, non-essential amino acids, and total amino acids in pork of FBR5 and FBR10 were greater than those of the control group (p<0.05). Conclusion: These combined results suggest that feeding FBR could increase the average daily gain and average daily feed intake in pigs and the content of several flavor-promoting amino acids.

      • KCI등재

        Fibulin2: a negative regulator of BMSC osteogenic differentiation in infected bone fracture healing

        Li Shi-Dan,Xing Wei,Wang Shao-Chuan,Li You-Bin,Jiang Hao,Zheng Han-Xuan,Li Xiao-Ming,Yang Jing,Guo De-Bin,Xie Xiao-Yu,Jiang Ren-Qing,Fan Chao,Li Lei,Xu Xiang,Fei Jun 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Bone fracture remains a common occurrence, with a population-weighted incidence of approximately 3.21 per 1000. In addition, approximately 2% to 50% of patients with skeletal fractures will develop an infection, one of the causes of disordered bone healing. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays a key role in disordered bone repair. However, the specific mechanisms underlying BMSC dysfunction caused by bone infection are largely unknown. In this study, we discovered that Fibulin2 expression was upregulated in infected bone tissues and that BMSCs were the source of infection-induced Fibulin2. Importantly, Fibulin2 knockout accelerated mineralized bone formation during skeletal development and inhibited inflammatory bone resorption. We demonstrated that Fibulin2 suppressed BMSC osteogenic differentiation by binding to Notch2 and inactivating the Notch2 signaling pathway. Moreover, Fibulin2 knockdown restored Notch2 pathway activation and promoted BMSC osteogenesis; these outcomes were abolished by DAPT, a Notch inhibitor. Furthermore, transplanted Fibulin2 knockdown BMSCs displayed better bone repair potential in vivo. Altogether, Fibulin2 is a negative regulator of BMSC osteogenic differentiation that inhibits osteogenesis by inactivating the Notch2 signaling pathway in infected bone.

      • SCIESCOPUSKCI등재

        Reinforcement Effects of Sulfonated Bamboo Charcoal-Chitosan (sBC-CS) Hybrid for Styrene-Butadiene Rubber Latex

        Xiang Xu Li(리시앙수),Ji Hwan Oh(오지환),Shin Hye Kang(강신혜),Sun Ho Jang(장선호),Dam Hee Lee(이담희),Ur Ryong Cho(조을룡) 한국고분자학회 2017 폴리머 Vol.41 No.5

        스티렌-부타디엔 고무에 4가지 충전제(키토산, 뱀부차콜 분말, 술폰화된 뱀부차콜, 술폰화된 뱀부차콜-키토산 혼성체)를 사용하여 라텍스 컴파운드법으로 고무복합체를 제조하였다. 주사전자현미경과 카본블랙 분산 테스트를 통해서 균일하게 충전제가 고무 매트릭스 내에 분산되었음을 확인하였으며, 가황된 고무복합체의 인장강도, 저장 탄성률, 내마모성, 마찰 계수, 팽윤 특성, 산소 투과도를 조사하였다. 술폰화된 뱀부차콜-키토산 혼성체가 다른 충전제보다 고무 매트릭스에 분산된 입자가 더 작고 잘 분산된 상태를 보였다. 또한 좋은 소수성 성질과 균일한 분산도로 충전제 중 가장 우수한 보강 성능을 보였다. Styrene-butadiene rubber (SBR) composites, incorporated with four kinds of fillers (chitosan, bamboo charcoal powder, sulfonated bamboo charcoal and sulfonated bamboo charcoal-chitosan hybrid) with similar filling ratio, were fabricated by a latex compounding method. Field emission scanning electron microscopy and carbon black dispersion tests were employed to confirm the uniform dispersion of filler in the matrix. The tensile strength, storage modulus, abrasion resistance, friction coefficient, swelling property, and oxygen transmission rates of the vulcanized rubber composites were investigated. The sulfonated bamboo charcoal-chitosan hybrid (sBC-CS) showed a smaller particle size and a better dispersion state compared with those of other fillers. In addition, this compound exhibited the best mechanical reinforcing performance among the four fillers with its great hydrophobic property and good dispersion rate.

      • KCI등재

        Fabricated smart sponge with switchable wettability and photocatalytic response for controllable oil-water separation and pollutants removal

        Xu Xu,Minxuan Li,Xiang Li,Lei Zhang 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.92 No.-

        Stimuli-responsive materials with the controllable oil-water separation and water further purificationabilities show great potential in practical applications. In this paper, a highly effective and eco-friendlysmart pH-responsive melamine sponge with switchable wettability and photocatalytic activity wasprepared via anchoring three-dimensional cell-like BiOCl microspheres into sponge skeletons and beingmodified by dodecanedioic acid and lauric acid. The obtained sponge shows rapidly switchablewettability and can separate various oil/water mixtures with high efficiency up to 99%. Moreover, the aspreparedsmart sponge also demonstrates reliable photocatalytic ability and could remove the solublepollutants (such as methylene blue and Sudan III) under visible light as well as UV light (degradationefficiency around 100%). Besides, the smart pH-responsive material showed satisfactory reusability andstability. This smart multifunctional material has outstanding potential in water resource purification.

      • KCI등재

        Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

        Xu, Li Xiang,Sohn, Mi Hyun,Kim, Yu Soo,Jeong, Ye Rin,Cho, Ur Ryong The Korean Society Of SemiconductorDisplay Technol 2019 반도체디스플레이기술학회지 Vol.18 No.3

        Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

      • SCIESCOPUSKCI등재

        Study on Styrene-Butadiene Rubber Composites Reinforced by Hybrids of Chitosan and Bamboo Charcoal/Silica

        Xiang Xu Li(리시앙수),Ur Ryong Cho(조을룡) 한국고분자학회 2018 폴리머 Vol.42 No.5

        키토산-폴리(비닐 알코올)(CS-PVA) 젤 및 충전제[뱀부차콜(BC) 및 실리카(SI)] 첨가에 대한 스티렌-부타디엔 고무의 점탄성 물성을 조사하였다. 스디렌-부타디엔 고무 라텍스에 상호 침투 가교 방법으로 제조된 키토산-PVA-뱀부차콜/실리카(BC/SI-CS-PVA) 혼성체를 혼합하여 고무복합체를 제조하였다. 고무 가공분석기의 변형 스윕(strain sweep) 및 주파수 스윕(frequency sweep) 기능을 사용하여 제조된 복합체(composites) 및 가황체(vulcanizates)의 점탄성을 조사하였다. 주사전자현미경 및 내마모성 측정을 통해서 가교 구성 및 기계적 물성을 확인하였다. 충전제의 종류에 따라서 스티렌-부타디엔 고무의 저장 탄성률(G") 및 탄성 토크(S")는 현저하게 증가하였다. 실험 결과를 통해서 BC-CS-PVA 혼성체가 가장 높은 저장 탄성률(G"), 탄성 토크(S") 및 내마모성의 결과를 보였다. 따라서 BC-CSPVA 혼성체가 SBR 복합체에 가장 좋은 점탄성 물성 및 기계적 물성의 보강 효과를 보였다. The influences of chitosan-poly(vinyl alcohol) (CS-PVA) gel and different fillers [bamboo charcoal (BC) and silica (SI)] on the viscoelastic properties of styrene-butadiene rubber (SBR) were studied in this work. The chitosan-PVAbamboo charcoal/silica (BC/SI-CS-PVA) hybrid fillers compatibilized SBR composites were fabricated by interpenetrating polymer network (IPN) method. The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the modes of strain and frequency sweeps. Storage modulus (G") and elastic torque (S") of the SBR increased significantly with the incorporation of different hybrid filler. BC-CS-PVASBR composite showed the highest storage modulus and elastic torque and abrasion resistance, which means BC-CSPVA hybrid filler could make the best reinforcement of viscoelastic and mechanical properties for SBR material in this research.

      • KCI등재

        Preparation of Sulfonated Bamboo Charcoal-Chitosan (sBC-CS) Hybrid and Its Application in the Reinforcement of Natural Rubber

        Li Xiang Xu,Ge Xin,Cho Ur Ryong(조을룡) 한국고분자학회 2016 폴리머 Vol.40 No.6

        술폰화된 뱀부차콜-키토산(sulfonated bamboo charcol-chitosan, sBC-CS) 혼성체가 천연고무 보강을 위한 바이오고분자를 개발하기 위하여 적용되었다. 공중합은 키토산과 술폰화 반응 방법에 의해 술폰화된 뱀부차콜과 함께 수행되었다. 얻어진 sBC-CS는 FTIR, X-ray 회절, 분산속도 분석, field-emission electron microscopy 및 열무게 분석법에 의하여 분석되었다. 순수한 키토산과 비교하여, sBC-CS의 더 좋은 열안정성이 관찰되었다. 또한 sBC-CS 혼성체로 보강된 천연고무 복합체가 제조되었고, 황이 가교제로 사용되었다. 가황된 복합체의 기계적 물성이 측정되었는데, 순수한 키토산으로 충전된 천연고무 복합체와 비교할 때 sC-CS로 보강된 천연고무 복합체가 개선된 기계적 물성을 보여서, 이 물질이 중요한 고무 보강재임을 나타내었다. A sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid was applied to develop a biopolymer for natural rubber reinforcements. The copolymerization was conducted with chitosan (CS) and sulfonated bamboo charcoal by a sulfonation reaction method. The obtained sBC-CS was characterized by FTIR, X-ray diffraction, dispersion rate analysis, field-emission electron microscopy, and thermal gravimetric analysis. In comparison to pure chitosan, a greater thermal stability of sBC-CS was observed. In addition, sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid reinforced natural rubber composites were produced, and sulfur was used as a vulcanizing agent. Their vulcanizing and mechanical properties were characterized. Comparing to the pure chitosan filled natural rubber composites, the sBC-CS reinforced natural rubber composites showed improved mechanical properties, indicating the this material"s potential application for rubber reinforcements.

      • SCIESCOPUSKCI등재

        Study on Mechanical Properties and Viscoelastic Properties of Bio-polyurethanes

        Xiang Xu Li(리시앙수),Kyung Ho Jin(진경호),Ur Ryong Cho(조을룡) 한국고분자학회 2019 폴리머 Vol.43 No.5

        바이오매스 유래의 azelaic acid, 1,3-propanediol(1,3-PD)를 사용하여 바이오 폴리에스터 폴리올을 합성하였다. 합성한 폴리에스터 폴리올에 MDI(4,4"-methylenebis (phenyl isocyanate)), H12MDI and IPDI(isophorone diisocyanate)와 사슬연장제로 1,4-butanediol(1,4-BD)을 넣고 바이오 폴리우레탄을 합성하였다. 그리고 사슬연장제 없이 poly(1,4-butylene adipate)를 폴리올로 사용하여 일반 폴리우레탄을 합성하였다. 고분자 가공분석기(RPA)의 변형 스윕(strain sweep) 기능을 사용하여 제조된 폴리우레탄의 점탄성을 조사하였다. UTM, shore A, ball rebound 및 taber기계를 사용하여 폴리우레탄의 인장강도, 경도, 반발탄성 및 내마모성 측정을 통하여 기계적 물성을 확인하였다. 제조된 바이오 폴리우레탄은 일반 폴리우레탄보다 더 좋은 점탄성, 내마모성 및 신장률(elongation rate)을 보였다. The bio-polyester polyol has been prepared by azelaic acid and 1,3-propanediol(1,3-PD) from biomass with esterification synthesis method, and MDI (4,4"-methylenebis (phenyl isocyanate)), H12MDI and IPDI (isophorone diisocyanate) were used as isocyanates, 1,4-butanediol(1,4-BD) was used as chain extender. It also had been set the general polyurethane with SS-106 polyol, and bio-polyurethane without chain extender as control groups. The viscoelastic behaviors of the bio-polyurethanes were explored using a rubber processing analyzer (RPA) in the mode of strain sweep. And the mechanical properties (tensile strength, hardness value, resilience, abrasion resistance) were characterized by UTM, shore A tester, ball rebound and taber abrasion resistance tester. From the results above, the bio-polyurethane which synthesized in this research with bio-polyester polyol showed better abrasion resistance, elongation rate and viscoelastic properties compared to the general polyurethane material as elastomers.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼