RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        VirtAV: an Agentless Runtime Antivirus System for Virtual Machines

        ( Hongwei Tang ),( Shengzhong Feng ),( Xiaofang Zhao ),( Yan Jin ) 한국인터넷정보학회 2017 KSII Transactions on Internet and Information Syst Vol.11 No.11

        Antivirus is an important issue to the security of virtual machine (VM). According to where the antivirus system resides, the existing approaches can be categorized into three classes: internal approach, external approach and hybrid approach. However, for the internal approach, it is susceptible to attacks and may cause antivirus storm and rollback vulnerability problems. On the other hand, for the external approach, the antivirus systems built upon virtual machine introspection (VMI) technology cannot find and prohibit viruses promptly. Although the hybrid approach performs virus scanning out of the virtual machine, it is still vulnerable to attacks since it completely depends on the agent and hooks to deliver events in the guest operating system. To solve the aforementioned problems, based on in-memory signature scanning, we propose an agentless runtime antivirus system VirtAV, which scans each piece of binary codes to execute in guest VMs on the VMM side to detect and prevent viruses. As an external approach, VirtAV does not rely on any hooks or agents in the guest OS, and exposes no attack surface to the outside world, so it guarantees the security of itself to the greatest extent. In addition, it solves the antivirus storm problem and the rollback vulnerability problem in virtualization environment. We implemented a prototype based on Qemu/KVM hypervisor and ClamAV antivirus engine. Experimental results demonstrate that VirtAV is able to detect both user-level and kernel-level virus programs inside Windows and Linux guest, no matter whether they are packed or not. From the performance aspect, the overhead of VirtAV on guest performance is acceptable. Especially, VirtAV has little impact on the performance of common desktop applications, such as video playing, web browsing and Microsoft Office series.

      • SCIESCOPUSKCI등재

        IOMMU Para-Virtualization for Efficient and Secure DMA in Virtual Machines

        Tang, Hongwei,Li, Qiang,Feng, Shengzhong,Zhao, Xiaofang,Jin, Yan Korean Society for Internet Information 2016 KSII Transactions on Internet and Information Syst Vol.10 No.12

        IOMMU is a hardware unit that is indispensable for DMA. Besides address translation and remapping, it also provides I/O virtual address space isolation among devices and memory access control on DMA transactions. However, currently commodity virtualization platforms lack of IOMMU virtualization, so that the virtual machines are vulnerable to DMA security threats. Previous works focus only on DMA security problem of directly assigned devices. Moreover, these solutions either introduce significant overhead or require modifications on the guest OS to optimize performance, and none can achieve high I/O efficiency and good compatibility with the guest OS simultaneously, which are both necessary for production environments. However, for simulated virtual devices the DMA security problem also exists, and previous works cannot solve this problem. The reason behind that is IOMMU circuits on the host do not work for this kind of devices as DMA operations of which are simulated by memory copy of CPU. Motivated by the above observations, we propose an IOMMU para-virtualization solution called PVIOMMU, which provides general functionalities especially DMA security guarantees for both directly assigned devices and simulated devices. The prototype of PVIOMMU is implemented in Qemu/KVM based on the virtio framework and can be dynamically loaded into guest kernel as a module, As a result, modifying and rebuilding guest kernel are not required. In addition, the device model of Qemu is revised to implement DMA access control by separating the device simulator from the address space of the guest virtual machine. Experimental evaluations on three kinds of network devices including Intel I210 (1Gbps), simulated E1000 (1Gbps) and IB ConnectX-3 (40Gbps) show that, PVIOMMU introduces little overhead on DMA transactions, and in general the network I/O performance is close to that in the native KVM implementation without IOMMU virtualization.

      • KCI등재

        IOMMU Para-Virtualization for Efficient and Secure DMA in Virtual Machines

        ( Hongwei Tang ),( Qiang Li ),( Shengzhong Feng ),( Xiaofang Zhao ),( Yan Jin ) 한국인터넷정보학회 2016 KSII Transactions on Internet and Information Syst Vol.10 No.12

        IOMMU is a hardware unit that is indispensable for DMA. Besides address translation and remapping, it also provides I/O virtual address space isolation among devices and memory access control on DMA transactions. However, currently commodity virtualization platforms lack of IOMMU virtualization, so that the virtual machines are vulnerable to DMA security threats. Previous works focus only on DMA security problem of directly assigned devices. Moreover, these solutions either introduce significant overhead or require modifications on the guest OS to optimize performance, and none can achieve high I/O efficiency and good compatibility with the guest OS simultaneously, which are both necessary for production environments. However, for simulated virtual devices the DMA security problem also exists, and previous works cannot solve this problem. The reason behind that is IOMMU circuits on the host do not work for this kind of devices as DMA operations of which are simulated by memory copy of CPU. Motivated by the above observations, we propose an IOMMU para-virtualization solution called PVIOMMU, which provides general functionalities especially DMA security guarantees for both directly assigned devices and simulated devices. The prototype of PVIOMMU is implemented in Qemu/KVM based on the virtio framework and can be dynamically loaded into guest kernel as a module, As a result, modifying and rebuilding guest kernel are not required. In addition, the device model of Qemu is revised to implement DMA access control by separating the device simulator from the address space of the guest virtual machine. Experimental evaluations on three kinds of network devices including Intel I210 (1Gbps), simulated E1000 (1Gbps) and IB ConnectX-3 (40Gbps) show that, PVIOMMU introduces little overhead on DMA transactions, and in general the network I/O performance is close to that in the native KVM implementation without IOMMU virtualization.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼