RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction

        Li, Yan,Xu, Rui,Ren, Yang,Lu, Jun,Wu, Huiming,Wang, Lifen,Miller, Dean J.,Sun, Yang-Kook,Amine, Khalil,Chen, Zonghai Elsevier 2016 Nano energy Vol.19 No.-

        <P><B>Abstract</B></P> <P>Nickel-rich metal oxides have been widely pursued as promising cathode materials for high energy-density lithium-ion batteries. Nickel-rich lithium transition metal oxides can deliver a high specific capacity during cycling, but can react with non-aqueous electrolytes. In this work, we have employed a full concentration gradient (FCG) design to provide a nickel-rich core to deliver high capacity and a manganese-rich outer layer to provide enhanced stability and cycle life. <I>In situ</I> high-energy X-ray diffraction was utilized to study the structural evolution of oxides during the solid-state synthesis of FCG lithium transition metal oxide with a nominal composition of LiNi<SUB>0.6</SUB>Mn<SUB>0.2</SUB>Co<SUB>0.2</SUB>O<SUB>2</SUB>. We found that both the pre-heating step and the sintering temperature were critical in controlling phase separation of the transition metal oxides and minimizing the content of Li<SUB>2</SUB>CO<SUB>3</SUB> and NiO, both of which deteriorate the electrochemical performance of the final material. The insights revealed in this work can also be utilized for the design of other nickel-rich high energy-density cathode materials.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Solid-state synthesis of FCG cathode is investigated by <I>in situ</I> XRD. </LI> <LI> Covariance analysis and Rietveld refinement are used to analyze the HEXRD data. </LI> <LI> Synthetic optimization of FCG cathode with excellent electrochemical performance. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Benefit from the covariance analysis and Rietveld refinement of <I>in situ</I> HEXRD data during the solid state synthesis, we can optimized the solid state synthesis conditions in a short time. And the full concentration gradient cathode composites (nickel-rich core and manganese-rich outer layer) with excellent electrochemical performance are obtained.</P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        White-Matter Hyperintensities and Lacunar Infarcts Are Associated with an Increased Risk of Alzheimer’s Disease in the Elderly in China

        Shuai Ye,Shuyang Dong,Jun Tan,Le Chen,Hai Yang,Yang Chen,Zeyan Peng,Yingchao Huo,Juan Liu,Mingshan Tang,Yafei Li,Huadong Zhou,Yong Tao 대한신경과학회 2019 Journal of Clinical Neurology Vol.15 No.1

        Background and Purpose This study investigated the contribution of white-matter hyperintensities (WMH) and lacunar infarcts (LI) to the risk of Alzheimer’s disease (AD) in an elderly cohort in China. Methods Older adults who were initially cognitively normal were examined with MRI at baseline, and followed for 5 years. WMH were classified as mild, moderate, or severe, and LI were classified into a few LI (1 to 3) or many LI (≥4). Cognitive function was assessed using the Mini Mental State Examination and the Activities of Daily Living scale. Results Among the 2,626 subjects, 357 developed AD by the end of the 5-year follow-up period. After adjusting for age and other potential confounders, having only WMH, having only LI, and having both WMH and LI were associated with an increased risk of developing AD compared with having neither WMH nor LI. Moderate and severe WMH were associated with an increased risk of developing AD compared with no WMH. Furthermore, patients with many LI had an increased risk of developing AD compared with no LI. Conclusions Having moderate or severe WMH and many LI were associated with an increased risk of developing AD, with this being particularly striking when both WMH and LI were present.

      • SCISCIESCOPUS

        Aprotic and Aqueous Li–O<sub>2</sub> Batteries

        Lu, Jun,Li, Li,Park, Jin-Bum,Sun, Yang-Kook,Wu, Feng,Amine, Khalil American Chemical Society 2014 Chemical reviews Vol.114 No.11

        <P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/chreay/2014/chreay.2014.114.issue-11/cr400573b/production/images/medium/cr-2013-00573b_0033.gif'></P>

      • Hypoglycemic triterpenes from <i>Gynostemma pentaphyllum</i>

        Wang, Jun,Ha, Thi Kim Quy,Shi, Yan-Ping,Oh, Won Keun,Yang, Jun-Li Elsevier 2018 Phytochemistry Vol.155 No.-

        <P><B>Abstract</B></P> <P>To search for bioactive gypenosides and their analogues, a saponin enriched fraction and its hydrolyzate from <I>Gynostemma pentaphyllum</I> were phytochemically investigated. Fractionation by diverse chromatographic methods, including HPLC, Sephadex LH-20, silica gel, and C18 reverse phase silica gel, led to the isolation and purification of twelve triterpenes, including five undescribed and seven known. The chemical structures of all compounds were determined as analyzed by nuclear magnetic resonance (NMR), high resolution mass spectrometry (HR-MS), infrared spectrum (IR), optical rotation, and chemical transformations. Among all isolates, nine compounds possessed a rare dammarane triterpenoid framework with A-ring modified. The relative configurations of three compounds were determined by 2D NMR for the first time. The absolute configurations of four compounds were determined by the modified Mosher's method. Two of all isolated compounds significantly enhanced 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) uptake and Glucose Transporter 4 (GLUT4) translocation via activating the AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) signaling pathway. This study provided the potential candidates for the development of antidiabetic agents.</P> <P><B>Highlights</B></P> <P> <UL> <LI> <I>Gynostemma pentaphyllum</I> is a traditional medicinal and edible plant in China. </LI> <LI> Five undescribed triterpenes were isolated. </LI> <LI> The modified Mosher's method was used to determine the absolute configurations. </LI> <LI> Their hypoglycemic activity was evaluated in differentiated 3T3-L1 adipocytes. </LI> <LI> This study provided the potential candidates for antidiabetic agents. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Five undescribed and nine known triterpenes were isolated from the hydrolyzate and extract of <I>Gynostemma pentaphyllum.</I> Their hypoglycemic activity was evaluated.</P> <P>[DISPLAY OMISSION]</P>

      • SCISCIESCOPUS

        Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth

        Lyu, Junfang,Yang, Eun Ju,Head, Sarah A.,Ai, Nana,Zhang, Baoyuan,Wu, Changjie,Li, Ruo-Jing,Liu, Yifan,Yang, Chen,Dang, Yongjun,Kwon, Ho Jeong,Ge, Wei,Liu, Jun O.,Shim, Joong Sup Elsevier 2017 Cancer letters Vol.409 No.-

        <P><B>Abstract</B></P> <P>Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A phenotypic screen identified 13 existing drugs, including cepharanthine, as cholesterol trafficking inhibitors. </LI> <LI> Cepharanthine inhibited lysosomal cholesterol trafficking by binding to NPC1 protein and increasing the lysosomal pH. </LI> <LI> The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes. </LI> <LI> Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. </LI> <LI> Cepharanthine treatment enhanced the antitumor activity of cisplatin in lung and breast cancer xenografts in mice. </LI> </UL> </P>

      • SCISCIESCOPUS

        Effect of substrate reflecting conditions on the curing of UV curable resin layers on aluminum and the formation of surface wavy structures

        Zhao, Zhi-Jun,Yang, Jeong-Ho,Li, Xin,Park, Sang-Hu Elsevier 2016 Materials letters Vol.164 No.-

        <P><B>Abstract</B></P> <P>We have investigated the formation of surface wavy structures (wrinkles) depending on the diverse surface conditions of a substrate, and now report the effect of various levels of reflection of incident ultraviolet (UV)-light. UV-curable resin layers with a thickness of 0.15mm were coated on three different surface conditions; transparent glass, fine and rough surface aluminum plate, to compare the formation of wrinkles on each surface. Short irradiations of UV-light for 10, 15, 20, 25 and 30s were exposed, resulting in the weak to full polymerization of the skin of a resin layer, respectively. The wavy structures were formed during thermal curing under room temperature after the short exposure of UV-light. The difference in reflection conditions resulting from the various surface roughnesses of the substrates led to changes in the amounts of polymerization, and the distribution of polymerization intensity through the layer thickness. Due to these different mechanisms, wrinkling shapes were quite distinguished. Through this work, we observed that controllable producing an approximately 33% maximum difference in the line width of wrinkles by using different substrate surface conditions.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The effect of a substrate reflection condition was investigated for diverse generation of surface wrinkles. </LI> <LI> It was studied that the fundamental mechanism on formation of wrinkles by weak-polymerization and thermal curing process. </LI> <LI> Irregular line-shapes of wrinkles with a range of 62–92μm in line width were fabricated by using the effect of substrate reflection conditions. </LI> <LI> Contact angle was varied depending on wrinkle shapes from 63° to 76°. </LI> </UL> </P>

      • Inhibition of α-glucosidase by 2-thiobarbituric acid: Molecular dynamics simulation integrating parabolic noncompetitive inhibition kinetics

        Qin, Xiu-Yuan,Lee, Jinhyuk,Zheng, Li,Yang, Jun-Mo,Gong, Yan,Park, Yong-Doo Elsevier 2018 Process biochemistry Vol.65 No.-

        <P><B>Abstract</B></P> <P>The phenomenon of α-glucosidase inhibition has attracted the attention of researchers due to its association with type 2 diabetes treatment in humans. In this study, we found that 2-thiobarbituric acid (TBA) induces complex inhibition of α-glucosidase using kinetics tests and molecular dynamics (MD) simulations. Computational MD and docking simulations demonstrate that TBA interacts with three residues on active sites of α-glucosidase such as Met69, Arg212, and His348. These biochemical tests indicate that TBA reversibly inhibits α-glucosidase in a parabolic noncompetitive manner (<I>IC</I> <SUB>50</SUB> =17.13±1.14mM; <I>K</I> <SUB>i</SUB> =13.25±0.56mM) and that this inhibition is accompanied by a biphasic kinetic process. The tertiary conformational changes were not synchronized with TBA inhibition but we observed hydrophobic disruption after inactivation at higher concentrations of TBA. Our results provide insight into the functional roles of residues located at the active sites of α-glucosidase, and we suggest that compounds similar to TBA (heterocyclic compounds) targeting the key residues of active sites are potential α-glucosidase inhibitors.</P> <P><B>Highlights</B></P> <P> <UL> <LI> 2-Thiobarbituric acid (TBA) induces complex inhibition of α-glucosidase. </LI> <LI> Computational MD simulations demonstrate that TBA interacts with Met69, Arg212, and His348. </LI> <LI> TBA reversibly inhibits α-glucosidase in a parabolic noncompetitive manner (<I>IC</I> <SUB>50</SUB> =17.13±1.14mM; <I>K</I> <SUB>i</SUB> =13.25±0.56mM). </LI> <LI> The high dose of TBA induces hydrophobic disruption after inactivation. </LI> <LI> Heterocyclic compounds targeting the key residues of active sites are potential α-glucosidase inhibitors. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • SCIESCOPUSKCI등재

        Production and Characterization of Ethanol- and Protease-Tolerant and Xylooligosaccharides-Producing Endoxylanase from Humicola sp Ly01

        ( Jun Pei Zhou ),( Qian Wu ),( Rui Zhang ),( Yu Ying Yang ),( Xiang Hua Tang ),( Jun Jun Li ),( Jun Mei Ding ),( Yan Yan Dong ),( Zun Xi Huang ) 한국미생물 · 생명공학회 2013 Journal of microbiology and biotechnology Vol.23 No.6

        This paper reports the production and characterization of crude xylanase from the newly isolated Humicola sp. Ly01. The highest (41.8 U/ml) production of the crude xylanase was obtained under the optimized conditions (w/v): 0.5% wheat bran, 0.2% KH2PO4, and 0.5% peptone; initial pH 7.0; incubation time 72 h; 30℃; and 150 rpm. A considerable amount of the crude xylanase was induced using hulless barley bran or soybean meal as the carbon source, but a small amount of the enzyme was produced when supplementary urea was used as the nitrogen source to wheat bran. The crude xylanase showed apparent optimal cellulase-free xylanase activity at 60℃ and pH 6.0, more than 71.8% of the maximum xylanase activity in 3.0-30.0% (v/v) ethanol and more than 82.3% of the initial xylanase activity after incubation in 3.0-30.0% (v/v) ethanol at 30℃ for 2 h. The crude xylanase was moderately resistant to both acid and neutral protease digestion, and released 7.9 and 10.9 μmol/ml reducing sugar from xylan in the simulated gastric and intestinal fluids, respectively. The xylooligosaccharides were the main products of the hydrolysis of xylan by the crude xylanase. These properties suggested the potential of the crude enzyme for being applied in the animal feed industry, xylooligosaccharides production, and high-alcohol conditions such as ethanol production and brewing.

      • KCI등재

        A multi-objective optimization for HAWT blades design by considering structural strength

        Yang Yang,Chun Li,Wanfu Zhang,Jun Yang,Zhou Ye,Weipao Miao,Kehua Ye 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.8

        The challenge of wind turbine blade design is to balance the conflict between high capacity and heavy system loads introduced by the large scale rotor. To solve this problem, we present a multi-objective optimization method to maximize the Annual energy production (AEP) and minimize the blade mass. The well-known Blade element momentum (BEM) theory is employed to predict the aerodynamic performance and AEP of the blade. The blade is simplified as a thin Bernoulli beam. The cross section is modelled as a combination of composite layer, shear webs and spar caps typically. The strain of every cross section has been considered as a constraint to minimize the spar cap thickness for minimizing the blade mass. An improved genetic algorithm (NSGA-II) is applied to obtain the Pareto front set. Several solutions of the Pareto set are selected to compare with the reference blade (NREL 5MW blade). Performance of the rotors on design condition is simulated by STAR-CCM+ to verify the results of BEM theory. Optimal results show that the present blade, which is fully superior to the reference blade, can be selected from the Pareto set. The optimization design method can provide a superior blade with an increase by 2.48% of AEP and a reduction by 5.52% of the blade mass. It indicates the present optimization method is effective. Results of numerical simulations show that the spanwise flow would be increased obviously in tip region of the reference blade. The reason is that chord length variation in blade tip affects the flow and causes minor stall. The abrupt change of chord distribution in blade tip should be avoided to reduce the spanwise flow in initial blade design.

      • KCI등재

        Fibulin2: a negative regulator of BMSC osteogenic differentiation in infected bone fracture healing

        Li Shi-Dan,Xing Wei,Wang Shao-Chuan,Li You-Bin,Jiang Hao,Zheng Han-Xuan,Li Xiao-Ming,Yang Jing,Guo De-Bin,Xie Xiao-Yu,Jiang Ren-Qing,Fan Chao,Li Lei,Xu Xiang,Fei Jun 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Bone fracture remains a common occurrence, with a population-weighted incidence of approximately 3.21 per 1000. In addition, approximately 2% to 50% of patients with skeletal fractures will develop an infection, one of the causes of disordered bone healing. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays a key role in disordered bone repair. However, the specific mechanisms underlying BMSC dysfunction caused by bone infection are largely unknown. In this study, we discovered that Fibulin2 expression was upregulated in infected bone tissues and that BMSCs were the source of infection-induced Fibulin2. Importantly, Fibulin2 knockout accelerated mineralized bone formation during skeletal development and inhibited inflammatory bone resorption. We demonstrated that Fibulin2 suppressed BMSC osteogenic differentiation by binding to Notch2 and inactivating the Notch2 signaling pathway. Moreover, Fibulin2 knockdown restored Notch2 pathway activation and promoted BMSC osteogenesis; these outcomes were abolished by DAPT, a Notch inhibitor. Furthermore, transplanted Fibulin2 knockdown BMSCs displayed better bone repair potential in vivo. Altogether, Fibulin2 is a negative regulator of BMSC osteogenic differentiation that inhibits osteogenesis by inactivating the Notch2 signaling pathway in infected bone.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼