RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Relaying of 4G Signal over 5G Suitable for Disaster Management following 3GPP Release 18 Standard

        Jayanta Kumar Ray,Ardhendu Shekhar Biswas,Arpita Sarkar,Rabindranath Bera,Sanjib Sil,Monojit Mitra 한국인터넷정보학회 2023 KSII Transactions on Internet and Information Syst Vol.17 No.2

        Technologies for disaster management are highly sought areas for research and commercial deployment. Landslides, Flood, cyclones, earthquakes, forest fires and road/train accidents are some causes of disasters. Capturing video and accessing data in real time from the disaster site can help first responders make split second decisions which may save human lives and valuable resource destructions. In this context the communication technologies performing the task should have high bandwidth and low latency which only 5G can deliver. But unfortunately in India, deployment of the 5G mobile communication systems is yet to give a shape and again in remote areas unavailability of 4G signals is still severe. In this situation the authors have proposed, simulated and experimented a 4G-5G communication scheme where from the disaster site the signals will be transmitted by a 5G terminal to a nearby 4G-5G gateway installed in a mobile vehicle. The received 5G signal will be further relayed by the 4G-5G gateway to the fixed 4G base station for onward transmission towards the disaster management station for decision making, deployment and relief monitoring. The 4G-5G gateway acts as a relay and converter of 5G signal to 4G signal and vice versa. This relayed system can be further mounted on a vehicle mounted relay (VMR) as proposed by 3GPP in Release 18. The scheme is also in the same line of context with Verizon’s, “Tactical Humanitarian Operations Response” (THOR) vehicle concept. The performance of the link is studied in different channel conditions, the throughput achieved is superb. The authors have implemented the above mentioned system towards smart campus networking and monitoring landslides activities which are common in their regions.

      • KCI등재

        Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

        G. Vivek,Jayanta Biswas,Meenu D. Nair,Mukti Barai 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

      • SCIESCOPUSKCI등재

        Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

        Vivek, G.,Biswas, Jayanta,Nair, Meenu D.,Barai, Mukti The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

      • SCIESCOPUSKCI등재

        Comparative Study on SVPWM Switching Sequences for VSIs

        Vivek, G.,Biswas, Jayanta,Nair, Meenu D.,Barai, Mukti The Korean Institute of Electrical Engineers 2018 Journal of Electrical Engineering & Technology Vol.13 No.1

        Paper presents a comparative study of space vector pulse width modulation (SVPWM) switching sequences for Voltage Source Inverters (VSIs). Various SVPWM switching sequences are studied for two and three level VSIs in linear modulation index region. The computations of dwell times are presented for two and three level VSIs based on space vector geometry in a synchronized and optimized manner. The existing SVPWM switching sequences are implemented using Matlab / Simulink and in an experimental setup for three phase two and three level VSIs. The simulation and experimental waveforms of conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are demonstrated for two and three level inverter respectively. The performance of different SVPWM switching sequences are evaluated and presented based on weighted voltage total harmonic distortion (THD).

      • KCI등재

        Comparative Study on SVPWM Switching Sequences for VSIs

        G. Vivek,Jayanta Biswas,Meenu D. Nair,Mukti Barai 대한전기학회 2018 Journal of Electrical Engineering & Technology Vol.13 No.1

        Paper presents a comparative study of space vector pulse width modulation (SVPWM) switching sequences for Voltage Source Inverters (VSIs). Various SVPWM switching sequences are studied for two and three level VSIs in linear modulation index region. The computations of dwell times are presented for two and three level VSIs based on space vector geometry in a synchronized and optimized manner. The existing SVPWM switching sequences are implemented using Matlab / Simulink and in an experimental setup for three phase two and three level VSIs. The simulation and experimental waveforms of conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are demonstrated for two and three level inverter respectively. The performance of different SVPWM switching sequences are evaluated and presented based on weighted voltage total harmonic distortion (THD).

      • KCI등재

        A Simple Real-Time DMPPT Algorithm for PV Systems Operating under Mismatch Conditions

        Aniruddha Kamath M.,Jayanta Biswas,Anjana K. G.,Mukti Barai 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.3

        This paper presents a distributed maximum power point tracking (DMPPT) algorithm based on the reference voltage perturbation (RVP) method for the PV modules of a series PV string. The proposed RVP-DMPPT algorithm is developed to accurately track the maximum power point (MPP) for each PV module operating under all atmospheric conditions with a reduced hardware overhead. To study the influence of parameters such as the controller reference voltage (Vref) and PV current (Ipv) on the PV string voltage, a small signal model of a unidirectional differential power processing (DPP) based PV-Bus architecture is developed. The steady state and dynamic performances of the proposed RVP DMPPT algorithm and small signal model of the unidirectional DPP based PV-Bus architecture are demonstrated with simulations and experimental results. The accuracy of the RVP DMPPT algorithm is demonstrated by obtaining a tracking efficiency of 99.4% from the experiment.

      • KCI등재

        New separation axioms in soft topological space

        A.R. Prasannan,Jayanta Biswas 원광대학교 기초자연과학연구소 2019 ANNALS OF FUZZY MATHEMATICS AND INFORMATICS Vol.18 No.1

        The more general form of soft separation axioms are defined in soft topological spaces and its interrelationship with existing soft separation axioms are studied. It was interesting to go through separation axiom as in [23] shown that there are limited relation between $T_i$ axioms (i = 0,1,2,3). In this paper, it is shown that these axioms are stronger than the existing separation axioms in soft topological spaces.

      • KCI등재

        Optimum Hybrid SVPWM Technique for Three-level Inverter on the Basis of Minimum RMS Flux Ripple

        Meenu D. Nair,Jayanta Biswas,G. Vivek,Mukti Barai 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.2

        This paper presents an optimum hybrid SVPWM technique for three-level voltage source inverters (VSIs). The proposed hybrid SVPWM technique aims to minimize total harmonic distortion (THD). A new parameter is introduced to incorporate the heterogeneous nature of switching sequences of SVPWM technique. The proposed hybrid SVPWM technique is implemented on a low-cost PIC microcontroller (PIC18F452) and verified experimentally with a 2 KVA three-phase three-level insulated gate bipolar transistor-based VSI. Optimum switching sequence results in the three-level inverter configuration are demonstrated. The proposed hybrid SVPWM technique improves the THD performance by 17.3% compared with the best available three-level SVPWM technique.

      • SCIESCOPUSKCI등재

        Optimum Hybrid SVPWM Technique for Three-level Inverter on the Basis of Minimum RMS Flux Ripple

        Nair, Meenu D.,Biswas, Jayanta,Vivek, G.,Barai, Mukti The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.2

        This paper presents an optimum hybrid SVPWM technique for three-level voltage source inverters (VSIs). The proposed hybrid SVPWM technique aims to minimize total harmonic distortion (THD). A new parameter is introduced to incorporate the heterogeneous nature of switching sequences of SVPWM technique. The proposed hybrid SVPWM technique is implemented on a low-cost PIC microcontroller (PIC18F452) and verified experimentally with a 2 KVA three-phase three-level insulated gate bipolar transistor-based VSI. Optimum switching sequence results in the three-level inverter configuration are demonstrated. The proposed hybrid SVPWM technique improves the THD performance by 17.3% compared with the best available three-level SVPWM technique.

      • KCI등재

        Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

        Meenu D. Nair,Jayanta Biswas,G. Vivek,Mukti Barai 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.5

        The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼