RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Effect of fermented blueberry on the oxidative stability and volatile molecule profiles of emulsion-type sausage during refrigerated storage

        Zhou, Hengyue,Zhuang, Xinbo,Zhou, Changyu,Ding, Daming,Li, Chunbao,Bai, Yun,Zhou, Guanghong Asian Australasian Association of Animal Productio 2020 Animal Bioscience Vol.33 No.5

        Objective: The aim of this work was to assess the effect of fermented blueberry (FB; 2%, 4%, and 6%) on the oxidative stability and volatile molecule profiles of emulsion-type sausage stored at 4℃ for 28 days. Methods: The antioxidant activity of FB was determined through radical-scavenging activity against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals. Four formulations of sausage treatments with different FB levels (0%, 2%, 4%, 6%) were prepared, then peroxide value (POVs), thiobarbituric acid-reactive substances (TBARS) values, protein carbonyls and thiol groups were measured. The aroma profiles of sausages for each treatment was also determined. Results: The half maximal inhibitory concentration indicated that FB had greater scavenging ability than ascorbic acid against DPPH and hydroxyl radicals. Sausages with FB significantly retarded increases in POVs and TBARS, as well as in the content of protein carbonyls during all storage days (p<0.05). Particularly, 4% and 6% FB-treated sausages had better oxidation inhibition effects. However, FB accelerated the reduction in thiol groups (p<0.05). Additionally, FB inhibits the excessive formation of aldehyde compounds; for example, hexanal, which may cause rancid flavors, decreased from 58.25% to 19.41%. FB also created 6 alcohols (i.e., 2-methyl-1-propanol, 3-methyl-1-butanol, and phenylethyl alcohol), 5 ester compounds (i.e., ethyl acetate, ethyl lactate, and ethyl hexanoate) and 3-hydroxy-2-butanone in the sausages that contribute to sausage flavors. The principal component analysis showed that the aroma profiles of sausages with and without FB are easily identified. Conclusion: The addition of FB could significantly reduce the lipid and protein oxidation and improve oxidative stability for storage. Also, adding FB could inhibit rancid flavors and contribute to sausage flavors.

      • KCI등재

        Comparative transcriptome analysis to reveal key ethylene genes involved in a Lonicera macranthoides mutant

        Long YuQing,Zeng Juan,Yang Min,Zhou XinRu,Zeng Mei,Liu ChangYu,Tong QiaoZhen,Zhou RiBao,Liu XiangDan 한국유전학회 2023 Genes & Genomics Vol.45 No.4

        Background Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. Objective To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. Methods Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. Results Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. Conclusions This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.

      • KCI등재

        Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

        ( Tao Li ),( Yingchun Wan ),( Lijuan Sun ),( Shoujun Tao ),( Peng Chen ),( Caihua Liu ),( Ke Wang ),( Changyu Zhou ),( Guoqing Zhao ) 한국응용약물학회 2019 Biomolecules & Therapeutics(구 응용약물학회지) Vol.27 No.4

        There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-1β and tumor-necrosis factor-αin the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and NF-κB in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼