RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Hydrazine detection by shape-controlled palladium nanostructures on carbon nanotube thin films

        Xuan-Hung Pham,Minh-Phuong Ngoc Bui,Cheng Ai Li,한귀남,Muhammad Irfan,홍명효,성기훈 한국바이오칩학회 2013 BioChip Journal Vol.7 No.2

        In this article, the electrodeposition of palladium (Pd) nanostructures on flexible and transparent single-walled carbon nanotube (SWCNT) thin films was described. Four different morphologies of Pd nanostructures were synthesized by controlling the potentials. Octahedral-like and flower-like nanostructures were observed at +0.3V and -0.1V, respectively. With a further driving potential decrease, cubic and spherical nanostructures were obtained in turn at 0.0V and -0.5V. The Pd nanostructures were confirmed by XRD data. Subsequently, the fabricated Pd nanostructures on SWCNT thin films were employed as electrodes for hydrazine detection. The electrochemical oxidation of hydrazine by Pd nanostructures was investigated by cyclic voltammetry and amperometry. As results, the specific sensitivities of four Pd nanostructures were 1123 μA mM cm-2 (octahedron), 899 μA mM cm-2 (flower), 827 μA mM cm-2 (cube), and 275μA mM cm-2 (sphere). The detection limits were 5.90μM (octahedron), 2.56 μM (flower), 2.85 μM (cube),and 4.83 μM (sphere).The morphology effect of Pd nanostructures on hydrazine oxidation is dependent on the relative fraction of (100), (110), and (111) facets which are associated with the shape. The (111) facet dominant Pd nanostructures exhibited the higher catalytic activities than Pd nanostructures with (100) and (110) facets.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼