RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis of Microbial Communities in Aquatic Sediment Microbial Fuel Cells Injected with Glucose

        김민,김수현,장재수,고성철,Kim, Min,Ekpeghere, Kalu I.,Kim, Soo-Hyeon,Chang, Jae-Soo,Koh, Sung-Cheol The Microbiological Society of Korea 2012 미생물학회지 Vol.48 No.4

        본 연구의 목적은 포도당을 자연의 저질기반 미생물연료전지에 주입할 경우 전기생산을 최적화하기 위한 것이며, 이 때 관련된 미생물의 군집을 분석하고 관련미생물의 역할을 검토하고자 하였다. 1,000 mg/L의 포도당이 주입되었을 때 생성되는 전류가 약 3배 가량 증가하였다. 이러한 증가는 주로 발효세균과 전기생성세균의 상호작용에 기인하는 것으로서, 이는 발효미생물에 의해 생성된 유기산이 전기생성 미생물에 의해서 분해되므로 유기산의 축적을 방지하여 되먹임저해(feedback inhibition) 현상을 감소 시키는데 그 원인이 있는 것으로 보인다. 반면, 더 높은 농도의 포도당이 주입되었을 시에는 전류가 떨어지거나 큰 증가가 일어나지 않았다. 만약 적절한 농도의 포도당이 주입될 시, 전기생성 미생물과 발효미생물이 동시에 포도당을 분해하면서 피드백을 제거하며 전류생성이 증가함을 알 수 있었다. 포도당을 토양에 주입하였을 시에 Clostridium sp.과 같은 발효미생물이 많이 나타났다. 포도당의 발효는 전기생성에 있어서 긍정적 영향과 부정적 영향을 미칠 수 있음이 밝혀졌다. 즉 발효산물이 전기생성미생물에 의해서 분해되어서 사용된다면 전기생성이 증가한다. 하지만, 발효산물이 전기생성미생물에 의해서 분해되지 못한다면 여러 전기생성을 억제하는 화학적반응(pH 저하, 메탄생성, 유기산 축적 등)이 일어나고 미생물연료전지와 관계없는 미생물들이 주입된 유기물을 대부분 분해하여 전기생성이 저하될 수 있음이 밝혀졌다. 적절한 농도의 포도당 주입을 통한 발효세균(Clostridium sp. 등)과 전기발생균(Geobacter sp. 등)의 적절한 조합은 자연상태에서의 혼합미생물존재 환경에서의 전기생산을 증가시킬 수 있을 것으로 기대된다. The purpose of this research was to optimize electric current production of sediment microbial fuel cells by injecting glucose and to investigate its impact on microbial communities involved. It was shown that injection of proper concentration of glucose could increase electric current generated from sediment microbial fuel cells. When 1,000 mg/L of glucose, as opposed to higher concentrations, was injected, electric current increased up to 3 times. This increase is mainly attributed to the mutual relationship between fermenting bacteria and exoelectrogenic bacteria. Here the organic acids generated by fermenting bacteria could be utilized by exoelectrogenic bacteria, removing feedback inhibition caused by the organic acids. When glucose was injected, the population of Clostridium increased as to ferment injected glucose. Glucose fermentation can have either a positive or negative effect on electric current generation. When exoelectrogenic bacteria may readily utilize the end-product, electric current could increase. However, when the end-product was not readily removed, then detrimental chemical reactions (pH decrease, methane generation, organic acids accumulation) occurred: exoelctrogenic bacteria population declined and non-microbial fuel cell related microorganisms prospered. By injecting a proper concentration of glucose, a mutual relationship between fermenting bacteria, such as Clostridium, and exoelectrogenic bacteria, such as Geobacter, should be fulfilled in order to increase electricity production in mixed cultures of microorganisms collected from the aquatic sediments.

      • SCOPUSKCI등재

        피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성

        김민일 ( Min Il Kim ),이영석 ( Young Seak Lee ) 한국공업화학회 2014 공업화학 Vol.25 No.2

        피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 NH3, NO 및 CO2와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 NH3 유해가스에 대하여 7.5% 감소하였으며, 그 NH3 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다. The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to inves-tigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as NH3, NO and CO2. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was de-creased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its NH3 gas sensing property was confirmed the most excellent compared with other toxic gases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼