RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Composite action of hollow concrete-filled circular steel tubular stub columns

        QIANG FU,Fa-Xing Ding,Tao Zhang,Liping Wang,Chang-jing Fang 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.26 No.6

        To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. After the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.

      • KCI등재

        ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages

        Fu Qiang,Shen Na,Fang Tao,Zhang Hewei,Di Yanbo,Liu Xuan,Du Chao,Guo Jianshuang 한국유전학회 2024 Genes & Genomics Vol.46 No.3

        Background ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. Objective The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. Methods NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. Results Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. Conclusion ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages. Background ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. Objective The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. Methods NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. Results Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. Conclusion ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.

      • KCI등재

        Bovine Viral Diarrhea Virus Infection Induces Autophagy in MDBK Cells

        Qiang Fu,Huijun Shi,Yan Ren,Fei Guo,Wei Ni,Jun Qiao,Pengyan Wang,Hui Zhang,Chuangfu Chen 한국미생물학회 2014 The journal of microbiology Vol.52 No.7

        Bovine viral diarrhea virus (BVDV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Pestivirus (Flaviviridae). The signaling pathways and levels of signaling molecules are altered in Madin-Darby Bovine Kidney (MDBK) cells infected with BVDV. Autophagy is a conservative biological degradation pathway that mainly eliminates and degrades damaged or superfluous organelles and macromolecular complexes for intracellular recycling in eukaryotic cells. Autophagy can also be induced as an effective response to maintain cellular homeostasis in response to different stresses, such as nutrient or growth factor deprivation, hypoxia, reactive oxygen species exposure and pathogen infection. However, the effects of BVDV infection on autophagy inMDBK cells remain unclear. Therefore, we performed an analysis of autophagic activity after BVDV NADL infection using real-time PCR, electron microscopy, laser confocal microscopy, and Western blotting analysis. The results demonstrated that BVDV NADL infection increased autophagic activity and significantly elevated the expression levels of the autophagy-related genes Beclin1 and ATG14 inMDBK cells. However, the knockdown of Beclin1 and ATG14 by RNA interference (RNAi) did not affect BVDV NADL infection-related autophagic activity. These findings provided a novel perspective to elaborate the effects of viral infection on the host cells.

      • Proteomic Analysis and Extensive Protein Identification from Dry, Germinating Arabidopsis Seeds and Young Seedlings

        Fu, Qiang,Wang, Bai-Chen,Jin, Xiang,Li, Hong-Bing,Han, Pei,Wei, Kai-Hua,Zhang, Xue-Min,Zhu, Yu-Xian Korean Society for Biochemistry and Molecular Biol 2005 Journal of biochemistry and molecular biology Vol.38 No.6

        Proteins accumulated in dry, stratified Arabidopsis seeds or young seedlings, totaled 1100 to 1300 depending on the time of sampling, were analyzed by using immobilized pH gradient 2-DE gel electrophoresis. The molecular identities of 437 polypeptides, encoded by 355 independent genes, were determined by MALDI-TOF or TOF-TOF mass spectrometry. In the sum, 293 were present at all stages and 95 were accumulated during the time of radicle protrusion while another 18 appeared in later stages. Further analysis showed that 226 of the identified polypeptides could be located in different metabolic pathways. Proteins involved in carbohydrate, energy and amino acid metabolism constituted to about 1/4, and those involved in metabolism of vitamins and cofactors constituted for about 3% of the total signal intensity in gels prepared from 72 h seedlings. Enzymes related to genetic information processing increased very quickly during early imbibition and reached highest level around 30 h of germination.

      • KCI등재

        Flexural Behavior and Prediction Model of Basalt Fiber/Polypropylene Fiber-Reinforced Concrete

        Qiang Fu,Zhaorui Zhang,Wenrui Xu,Xu Zhao,Lu Zhang,Yan Wang,Ditao Niu 한국콘크리트학회 2022 International Journal of Concrete Structures and M Vol.16 No.5

        The flexural behavior of basalt fiber (BF)/polypropylene fiber (PF)-reinforced concrete (BPRC) was investigated. When the content of BF and PF is 0.1%, the addition of fibers increases the compressive strength of concrete. A BF content of 0.1% has the most obvious effect on improving the compressive strength, but a hybrid fiber content of 0.2% exhibits a negative effect on the compressive strength. The addition of BF and PF can increase the flexural strength and the expansion tortuosity of the fracture cracks, thus enhancing the ductility of concrete. The hybrid fibers with content of 0.1% are most beneficial to increase the flexural strength. However, the ductility of concrete and the tortuosity of fracture crack decrease with the matrix strength, and the improvement proportion of fibers on the flexural strength also decreases. When the BF and PF are mixed, compared to the case of single fiber added, there is no significant change in the damage of BF, whereas the damage of PF is more severe. The flexural toughness index FTδ effectively characterizes the change in the flexural toughness of BPRC. The hybrid fiber contents of 0.1% and 0.2% exhibit the most significant improving effect on FT-l/600 and FT-l/150, respectively. Considering the influence of fibers on the compressive strength, flexural strength and flexural toughness of concrete, a hybrid content of 0.1% is the optimal choice of fiber content. A prediction model for flexural strength of BPRC is proposed based on the composite material theory.

      • KCI등재

        Selective Removal of Al(III) from Rare Earth Solutions Using Peas-based Activated Carbon

        Fu-Qiang An,Rui-Yan Wu,Zhi-Guo Yuan,Tuo-Ping Hu,Jian-Feng Gao 대한화학회 2017 대한화학회지 Vol.61 No.5

        Efficiently removing Al(III) from rare earth is very significant because even trace amount of Al(III) can cause serious harm to the rare earth materials. In this paper, a nitrogen-containing activated carbon, AC-P700, was synthesized using peas as raw materials. The AC-P700 was characterized by surface area analyzer, FT-IR, and XPS methods. The adsorption and recognition properties of AC-P700 towards Al(III) were investigated, and the recognition mechanism was also analyzed. The BET special surface area of AC-P700 was 1277.1 m2·g−1, and the average pore diameter was 1.90 nm. The AC-P700 possesses strong adsorption affinity and excellent recognition selectivity towards Al(III). The adsorption capacity for Al(III) could reach to 0.53 mmol·g−1, and relative selectivity coefficients relative to La(III) and Ce(III) is 9.6 and 8.7, respectively. Besides, ACP700 possesses better regeneration ability and reusability.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼