RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Open Access : Development of pig welfare assessment protocol integrating animal-, environment-, and management-based measures

        ( Anriansyah Renggaman ),( Hong L Choi ),( Sartika Ia Sudiarto ),( Laura Alasaarela ),( Ok S Nam1 ) 한국동물자원과학회(구 한국축산학회) 2015 한국축산학회지 Vol.57 No.1

        Background: Due to increased interest in animal welfare, there is now a need for a comprehensive assessment protocol to be used in intensive pig farming systems. There are two current welfare assessment protocols for pigs: Welfare Quality® Assessment Protocols (applicable in the Europe Union), that mostly focuses on animal-based measures, and the Swine Welfare Assurance Program (applicable in the United States), that mostly focuses on management- and environment-based measures. In certain cases, however, animal-based measures might not be adequate for properly assessing pig welfare status. Similarly, welfare assessment that relies only on environment- and management-based measures might not represent the actual welfare status of pigs. Therefore, the objective of this paper was to develop a new welfare protocol by integrating animal-, environment-, and management-based measures. The background for selection of certain welfare criteria and modification of the scoring systems from existing welfare assessment protocols are described. Methods: The developed pig welfare assessment protocol consists of 17 criteria that are related to four main principles of welfare (good feeding, good housing, good health, and appropriate behavior). Good feeding, good housing, and good health were assessed using a 3-point scale: 0 (good welfare), 1 (moderate welfare), and 2 (poor welfare). In certain cases, only a 2-point scale was used: 0 (certain condition is present) or 2 (certain condition is absent). Appropriate behavior was assessed by scan sampling of positive and negative social behaviors based on qualitative behavior assessment and human-animal relationship tests. Results: Modification of the body condition score into a 3-point scale revealed pigs with a moderate body condition (score 1). Moreover, additional criteria such as feed quality confirmed that farms had moderate (score 1) or poor feed quality (score 2), especially those farms located in a high relative humidity region. Conclusions: The developed protocol can be utilized to assess welfare status in an intensive pig farming system. Although further improvements are still needed, this study is a first step in developing a pig welfare assessment protocol that combines animal-, environment-, and management-based measures.

      • KCI등재

        The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

        FEBRISIANTOSAANDI,최홍림,Renggaman Anriansyah,Sudiarto Sartika I. A.,Lee Joonhee 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.7

        Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation–horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.

      • SCISCIESCOPUS

        Prediction of livestock manure and mixture higher heating value based on fundamental analysis

        Choi, Hong L.,Sudiarto, Sartika I.A.,Renggaman, Anriansyah Elsevier 2014 Fuel Vol.116 No.-

        <P><B>Abstract</B></P> <P>The ongoing availability of livestock waste presents an opportunity for its utilization as renewable energy resource through biological or thermochemical conversion. However, the conversion efficiency and the potential energy content of livestock waste needs to be estimated in order to design such a renewable energy production system. To address this, eight types of livestock waste were collected from each of 12 commercial farms from April to May 2009. The higher heating value (HHV), which represents the actual energy content, along with characteristics of livestock waste was determined. Moreover, equations for estimating HHV from proximate, ultimate, and chemical analysis were established by regression analysis. The developed equations were then validated using additional livestock waste data. The HHV of livestock waste was found to be in the range from 11.92 to 19.44MJ/kg dry matter. The equation, HHV=0.1970VM+0.3955 represents the best-fit equations derived from proximate analysis with an Average absolute error (AAE) value of 9.17%. The equation, HHV=0.1865CH+0.2671PR+0.2141F −0.2151 is best-fit equation derived from chemical analysis with an AAE value of 5.31%. The equation derived in this study, HHV=0.3198C+0.0803O+0.4704N −1.4502S+0.9364, was compared with ten recently published correlations based on ultimate analysis and showed better accuracy by having the lowest AAE values of 8.57%. All developed equations can be used to estimate HHV of various livestock waste with the exception of swine manure. The main reason for this limitation arises from the unique characteristics of pig manure in comparison to other livestock waste found in this study.</P> <P><B>Highlights</B></P> <P> <UL> <LI> HHV and characteristics of various livestock manure and mixture were determined. </LI> <LI> HHV correlations with livestock manures and mixtures characteristics were examined. </LI> <LI> Lower AAE value was obtained when pig manure excluded from equations database. </LI> <LI> Proposed equations give better accuracy than previous published equations. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼