RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR)

        Bintvihok, Anong,Treebonmuang, Supitchaya,Srisakwattana, Kitiya,Nuanchun, Wisut,Patthanachai, Koranis,Usawang, Sungworn Korean Society of ToxicologyKorea Environmental Mu 2016 Toxicological Research Vol.32 No.1

        Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxin-producing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was $65^{\circ}C$. The optimized template and primer concentration were $1.5{\mu}L\;(50ng/{\mu}L)$ and $3{\mu}L\;(10{\mu}M/{\mu}L)$ respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at $88.0^{\circ}C$, $87.5^{\circ}C$, $83.5^{\circ}C$, and $89.5^{\circ}C$ respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples.

      • KCI등재

        Bacillus subtilis가 생산하는 길항물질에 의한 아플라톡신 생성균의 억제

        강길진,정지현,조정일,Kang, Kill-Jin,Jeoung, Ji-Hyun,Cho, Jung-Il 한국식품위생안전성학회 2000 한국식품위생안전성학회지 Vol.15 No.2

        아플라톡신 생성균의 생육을 억제할 수 있는 미생물을 분리동정하고 진공동결 건조한 대사산물로부터 길항물질을 분리하였다. 대두로부터 아플라톡신 생육을 저해하는 길항균을 분리하였으며, 그 균은 Bacillus subtilis로 동정되었다. Bacillus subtilis는 아플라톡신 생성균에 대한 길항물질을 생산하였으며 MeOH추출, 실리카겔 흡착 크로마토그래피법, Sephadex LH-20 크로마토그래피법으로 길항물질을 분리하였다. 아플라톡신 생성균인 Asp. flavus와 Asp. parasiticus의 생육은 길항미생물인 Bacillus subtilis가 생산하는 길항물질에 의해 강하게 저해되었으며 이는 아플라톡신 오염방지를 위하여 효과적인 생물학적 방법일 것이라 기대된다. An antifungal bacterium was isolated to inhibit of the growth of Asp. flavus and Asp. parasiticus, and its antifungal compounds were purified from lyophilized culture broth using chromatographic methods. Antifungal bacterium #19 which was shown a higher inhibitory activity on the growth of aflatoxin producing fungi was identified as Bacillus subtilis. The purified antifungal compound(1 mg) was demonstrated strong antifungal activity against the aflatoxin producing fungi.

      • KCI등재

        A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR)

        Anong Bintvihok,Supitchaya Treebonmuang,Kitiya Srisakwattana,Wisut Nuanchun,Koranis Patthanachai,Sungworn Usawang 한국독성학회 2016 Toxicological Research Vol.32 No.1

        Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxinproducing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was 65oC. The optimized template and primer concentration were 1.5 μL (50 ng/μL) and 3 μL (10 μM/μL) respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at 88.0oC, 87.5oC, 83.5oC, and 89.5oC respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼