RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Concept of Clean Technology

        Clift, Roland The Korean Society of Clean Technology 1995 청정기술 Vol.1 No.1

        Clean Technology goes beyond Clean-UP (or "End of PiPe) Technologies to include Pollution prevention, waste minimisation, and cleaner production. However, the concept of Clean Technology goes deeper than changes in technology, to ways in which human needs can be satisfied sustainably. In other words, Clean Technology, concentrates on delivering a human benefit rather than making a product. Introducing cleaner technology may therefore involve new commercial relationships as well as new technological practices. In some economic sectors, this involves leasing or providing a service rather than selling a product. Life Cycle Assessment (LCA) is an important tool in Clean Technology. LCA involves determining all the resources used and all the wastes and emissions produced in providing the human benefit. Use of LCA ensures that improved environmental performance in one part of the Life Cycle is not achieved merely at the expense of more environmental damage elsewhere. Going beyond LCA, the concepts of Life Cycle Design and "metabolised" use of materials are approaches to obtain maximum benefit from materials as they pass through the human economy. "Closed-loop" use can be a component of clean technology. Looking beyond simple re-use and recycling, a material may pass through a "cascade of uses". typically a series of applications with progressively lower performance specifications. Closed-loop use necessarily involves a change in commercial practice, because the material or product must be recovered after use.

      • KCI등재

        Toward the Construction of High-tech Infrastructure for Clean Manufacturing in Japanese Chemical Industry -Challenge of Simple Chemistry Program-

        Shimizu, Yoshiaki The Korean Society of Clean Technology 1996 청정기술 Vol.2 No.2

        Being confronted with the 21th century at hand, a paradigm shift has been a common topic for development in many fields. Among these, a concept of sustainable development is the most important one to resolve conflict and nurture mutualism between science/technology(SCI/TEC) and society/environment(SOC/ENV). Looking briefly over the resent stats of the chemical industry in Japan, in this paper, we will introduce a research program named simple chemistry as an example for such a challenge.

      • KCI등재

        Electrolyzed water as an alternative for environmentally-benign semiconductor cleaning chemicals

        Ryoo, Kunkul,Kang, Byeongdoo The Korean Society of Clean Technology 2001 청정기술 Vol.7 No.3

        A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as electrolyzed water(EW) are being studied. In this work, intentionally contaminated Si wafers were cleaned using the electrolyzed water. The electrolyzed water was generated by an electrolysis system which consists of three anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH4Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO2 concentration changes dissolved from air. Contact angles of UPW, AW, and CW on DHF treated Si wafer surfaces were measured to be $65.9^{\circ}$, $66.5^{\circ}$ and $56.8^{\circ}$, respectively, which characterizes clearly the eletrolyzed water. To analyze the amount of metallic impurities on Si wafer surface, ICP-MS was introduced. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. To analyze the number of particles on Si wafer surfaces, Tencor 6220 were introduced. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about $9{\ell}$ chemicals, while EW did only $400m{\ell}$ HCl electrolyte or $600m{\ell}$ NH4Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for promoting environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

      • KCI등재

        Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

        Swithenbank, J.,Nasserzadeh, V.,Ewan, B.C.R.,Delay, I.,Lawrence, D.,Jones, B. The Korean Society of Clean Technology 1996 청정기술 Vol.2 No.2

        After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

      • KCI등재

        Using Volunteer Programs to Encourage the Adoption of Clean Technologies in the United States

        Freeman, Harry M. The Korean Society of Clean Technology 1997 청정기술 Vol.3 No.2

        The paper reviews the movement in the United States to supplement environmental regulations with volunteer programs that encourage institutions and industry to go beyond compliance to achieve greater reductions in their waste and emissions than might otherwise be accomplished through the exclusive reliance on increasingly rigorous "end of the pipe" regulations. These volunteer programs have as a common element the encouragement of "pollution prevention" as a preferable strategy. Pollution prevention is a term used in the US to describe strategies, technologies, policies, etc. that focus on eliminating waste and emissions at the source rather than just treating and controlling them. In some countries the term "Clean Technologies" is used rather than pollution prevention. In the paper the author reviews selected voluntary programs and reports on accomplishments to date for those programs.

      • KCI등재

        Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

        Vo, Anh Thi Hoang,Lee, Hong-shik,Kim, Sangyong,Cho, Jin Ku The Korean Society of Clean Technology 2016 청정기술 Vol.22 No.4

        As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

      • KCI등재

        Stabilization Characteristics of Upgraded Coal using Palm Acid Oil

        Rifella, Archi,Chun, Dong Hyuk,Kim, Sang Do,Lee, Sihyun,Rhee, Youngwoo The Korean Society of Clean Technology 2016 청정기술 Vol.22 No.4

        These days, coal is one of the most important energy resources used for transportation, industry, and electricity. There are two types of coal: high-rank and low-rank. Low-rank coal has a low calorific value and contains large amounts of useless moisture. The quality of low-rank coal can be increased by simple drying technology and it needs to be stabilized by hydrocarbons (e.g. palm acid oil, PAO) to prevent spontaneous combustion and moisture re-adsorption. Spontaneous combustion becomes a major problem during coal mining, storage, and transportation. It can involve the loss of life, property, and economic value; reduce the quality of the coal; and increase greenhouse gas emissions. Besides spontaneous combustion, moisture re-adsorption also leads to a decrease in quality of the coal due to its lower heating value. In this work, PAO was used for additive to stabilize the upgraded coal. The objectives of the experiments were to determine the stabilization characteristic of coal by analyzing the behavior of upgraded coal by drying and PAO addition regarding crossing-point temperature of coal, the moisture behavior of briquette coal, and thermal decomposition behavior of coal.

      • KCI등재

        Experimental Study on Hydrogen Direct Reduction of Hematite in a Lab Scale Fluidized Bed Reactor by Estimating the Gas Consumption Rate

        Hasolli, Naim,Jeon, Seong Min,Park, Young Ok,Kim, Yong Ha The Korean Society of Clean Technology 2015 청정기술 Vol.21 No.2

        수소를 환원제로 사용한 산화철의 유동 환원에서, 환원율에 대한 다양한 공정 변수를 통해 산화철의 하나인 적철광의 환원 거동을 면밀히 관찰하였다. 본 연구를 위해 특별히 설계된 실험실 규모의 유동층 장치에서 목적으로 하는 환원 특성에 대한 가스 속도, 환원 시간 및 온도의 최적 값을 평가 하였다. 최적의 환원율을 나타낸 온도는 750 ℃, 환원 시간은 30분이며 이들을 다음의 시험을 위한 시작점으로 매개 변수 값을 설정 하였다. 가장 높은 관심을 갖는 변수들 중 하나는 가스의 소비 원단 위로, 이는 최적의 조건에서 산화철 1톤을 기준하여 90% 이상의 환원율을 달성하기 위해 요구되는 가스의 양을 말한다. 이 매개 변수는 실험실 수준 장치의 스케일 엎에 있어서 중요한 인자이며, 본 연구를 통해 1,500 Nm<sup>3</sup>/ton-ore가 산화철이 가장 높은 환원율을 갖기 위한 최적의 가스 소비 원단위 임을 확인하였다. Hematite reduction using hydrogen was conducted and the various process parameters were closely observed. A lab scale fluidized bed unit was designed especially for this study. The optimal values of the gas velocity, reduction time and temperature were evaluated. The values which indicated the highest reduction rate were set as fixed parameters for the following tests starting with the reduction time of 30 minutes and 750 ℃ of temperature. Among these variables the one with the highest interest was the gas specific consumption. It will tell the amount of the gas which is required to achieve a reduction rate of over 90% at the optimal conditions. This parameter is important for the scale up of the lab scale unit. 1,500 Nm<sup>3</sup>/ton-ore was found to be the optimal specific gas consumption rate at which the reduction rates exhibit the highest values for hematite.

      • KCI등재

        Large Scale Treatment of Perfluorocompounds Using a Thermal Plasma Scrubber

        Han, Sung-Han,Park, Hyun-Woo,Kim, Tae-Hee,Park, Dong-Wha The Korean Society of Clean Technology 2011 청정기술 Vol.17 No.3

        Thermal plasma has been presented for the decomposition of perfluorocompounds (PFCs) which are extensively used in the semiconductor manufacturing and display industry. We developed pilot-scale equipment to investigate the large scale treatment of PFCs and called it a "thermal plasma scrubber". PFCs such as $CF_4$, $C_2F_6$, $SF_6$, and $NF_3$ used in experiments were diluted with $N_2$. There were two different types of experiment setup related to the water spray direction inside the thermal plasma scrubber. The first type was that the water was sprayed directly into the gas outlet located at the exit of the reaction section. The second type was that the water was sprayed on the wall of the quenching section. More effective decomposition took place when the water was sprayed on the quenching section wall. For $C_2F_6$, $SF_6$, and $NF_3$ the maximum destruction and removal efficiency was nearly 100%, and for $CF_4$ was up to 93%.

      • KCI등재

        N-tetradecane/Water Emulsion as a Low-cost Phase Change Material for Efficient Packaging and Shipping of Vaccines

        Dao, Van-Duong,Choi, Ho-Suk The Korean Society of Clean Technology 2017 청정기술 Vol.23 No.3

        This study presents the preparation of n-tetradecane-in-water emulsions with different weight ratios of n-tetradecane and water, and their potential application in packaging and shipping vaccines. The size and distribution of the n-tetradecane droplets are characterized using optical microscopy and light scattering methods, respectively. The thermal properties of the emulsions are determined using the T-history method. In the results, the emulsions, which are comprised of 17 ~ 30 wt% oil, 3 wt% surfactant, and 67 ~ 80 wt% water, are stable and have droplet sizes in the range of 100 to 800 nm. The thermal properties demonstrate that subcooling is prevented through increasing the droplet size. The results indicate that the n-tetradecane/water emulsions containing 25 ~ 35 wt% n-tetradecane, with a melting point of $2{\sim}8^{\circ}C$ and a latent heat of $227.0{\sim}250.8kJ\;kg^{-1}$, are good candidate materials for packaging and shipping vaccines.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼