RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        CHARACTERISTICS OF PERFORMANCE AND EXHAUST EMISSION OF DIESEL ENGINES BY CHANGES IN FUEL PROPERTIES AND APPLICATION OF EGR

        Choi, S.H.,Oh, Y.T. The Korean Society of Automotive Engineers 2007 International journal of automotive technology Vol.8 No.2

        In this study, the potential use of oxygenated fuels such as ethylene glycol mono-normal butyl ether (EGBE) was investigated in an attempt to reduce the emission of exhaust smoke from diesel engines. Effects of the combustion method on exhaust emission of DI and IDI diesel engines were also examined. Since EGBE is composed of approximately 27.1% oxygen, this is one of several potential oxygenated fuels that could reduce the smoke content of exhaust gas. EGBE blended fuels have been proven to reduce smoke emission remarkably compared to the conventional commercial fuels. The test was conducted with single and four cylinder, four stroke, DI and IDI diesel engines. The study showed that a simultaneous reduction of smoke and NOx emission could be achieved by the combination of oxygenated blend fuels and the cooled EGR method in both DI and IDI diesel engines. It was also found that a reduction rate of exhaust emission in a DI engine was larger than an IDI diesel engine.

      • SCIESCOPUSKCI등재

        COMBUSTION AND EMISSION CHARACTERISTICS OF A LEAN BURN NATURAL GAS ENGINE

        Cho, H.M.,He, B.Q. The Korean Society of Automotive Engineers 2008 International journal of automotive technology Vol.9 No.4

        Lean burn is an effective way to improve spark ignition engine fuel economy. In this paper, the combustion and emission characteristics of a lean burn natural gas fuelled spark ignition engine were investigated at various throttle positions, fuel injection timings, spark timings and air fuel ratios. The results show that ignition timings, the combustion duration, the coefficient of variation (COV) of the indicated mean effective pressure (IMEP) and engine-out emissions are dependent on the overall air fuel ratio, spark timings, throttle positions and fuel injection timings. With the increase of the air fuel ratio, the ignition delays and combustion duration increases. Fuel injection timings affect ignition timings, combustion duration, IMEP, and the COV of the IMEP. Late fuel injection timings can decrease the COV of the IMEP. Moreover, the change in the fuel injection timings reduces the engine-out CO, total hydrocarbon (THC) emissions. Lean burn can significantly reduce NOx emissions, but it results in high cyclic variations.

      • SCIESCOPUSKCI등재

        EXPERIMENTAL INVESTIGATION ON THE EFFECT OF MAGNETIC FLUX TO REDUCE EMISSIONS AND IMPROVE COMBUSTION PERFORMANCE IN A TWO-STROKE, CATALYTIC-COATED, SPARK-IGNITION ENGINE

        Govindasamy, P.,Dhandapani, S. The Korean Society of Automotive Engineers 2007 International journal of automotive technology Vol.8 No.5

        The two stroke spark ignition engine is the greatest contributor of the total vehicular pollution in a country like India. It is therefore an item that requires great attention in order to reduce fuel consumption and its concomitant pollution. The use of strong magnetic charge in the fuel line gives a complete and clean burn so that power is increased while operating expenses are reduced. The magnetic flux on the fuel line dramatically reduces harmful exhaust emissions while increasing mileage, thereby saving money and improving engine performance. It increases combustion efficiency and provides higher-octane performance. The experimental results show that the magnetic flux on fuel reduces the carbon monoxide emission up to 13% in a base engine, 23% in a copper-coated engine and 29% in a zirconia-coated engine.

      • SCIESCOPUSKCI등재

        INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

        Xiao, G.,Qiao, X.,Li, G.,Huang, Z.,Li, L. The Korean Society of Automotive Engineers 2007 International journal of automotive technology Vol.8 No.4

        This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

      • SCIESCOPUSKCI등재

        THE NEW DEUTZ ENGINE FAMILY 2013 FOR COMMERCIAL VEHICLES

        Mikulic, L.,Pleimling, H.,Pfeifer, A.,Lingens, A. The Korean Society of Automotive Engineers 2001 International journal of automotive technology Vol.2 No.4

        DEUTZ AG, co-founded in 1864 by Nicolaus August Otto, the inventor of the four-stroke cycle engine, has developed the new 2013 engine for commercial vehicles on the basis of the tried and tested 1012 and 1013 series. With 4 and 6 cylinder models, the engine covers the power range between 100 and 190 kW. At the time of their introduction to the market, the engines will meet the exhaust emission legislation of EURO IV and incorporate the potential for EURO IV, Further engineering targets were. (Compactness, Favourable power/cost relation, Low weight, Low fuel consumption and Low noise level). All targets could be accomplished in a relatively short development period via the application of modem simulation tools and test methods. In this paper, the design configuration of the engines is described with particular emphasis on measures for noise emission reduction and the combustion system including injection and turbo charging. Furthermore, we demonstrate the engine's potential to fullfill the European emission legislation EU4, which comes into force in 2005.

      • SCIESCOPUSKCI등재

        COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

        Chung, S.S.,Ha, J.Y.,Park, J.S.,Kim, K.J.,Yeom, J.K. The Korean Society of Automotive Engineers 2007 International journal of automotive technology Vol.8 No.1

        This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

      • SCIESCOPUSKCI등재

        ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

        Lee, Seok-Y.,Huh, Kang-Y.,Kim, Y.M.,Lee, J.H. The Korean Society of Automotive Engineers 2001 International journal of automotive technology Vol.2 No.3

        Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

      • SCIESCOPUSKCI등재

        COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

        LU X.,HUANG Z.,ZHANG W.,LI D. The Korean Society of Automotive Engineers 2005 International journal of automotive technology Vol.6 No.1

        The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.

      • SCIESCOPUSKCI등재

        STUDY ON COMBUSTION CHARACTERISTICS AND APPLICATION OF RADIAL INDUCED IGNITION METHOD IN AN ACTUAL ENGINE

        PARK J. S.,KANG B. M.,KIM K. J.,LEE T. W.,YEOM J. K.,CHUNG S. S. The Korean Society of Automotive Engineers 2005 International journal of automotive technology Vol.6 No.6

        This experimental study was executed to obtain basic data for actual engine operation using radical induced ignition method (RI) which can achieve emission reduction and high efficiency due to the rapid bulk combustion. In this study, a direct injection diesel engine was converted into SI type engine with a sparkplug. The modified SI type engine can be divided into two classes. One is the SI engine with a sparkplug only at the cylinder head, and the other is the SI engine with the sparkplug which is enveloped in a sub-chamber. Also, a basic experimental was conducted in order to investigate combustion mechanism of radical induced injection before the experiment execution for actual engine using the modified SI engine. The bulk combustion phenomenon of radical induced ignition method was analyzed from the basic experiment by using a constant volume chamber. Volume value of sub-chamber used in this experiment is approximately $0.2\%$ of one of the main combustion chamber. In this paper, combustion characteristics using radical induced injection method was compared with that of using spark ignition method according to change in the engine speed and equivalence ratio. As a result, in the case of the radical induced injection engine, the combustion duration and cycle variation were respectively reduced ranged from $\Phi$(equivalence ratio)=0.8 (lean mixture ratio) to $\Phi$=1.0 (stoichiometric ratio).

      • SCIESCOPUSKCI등재

        LEAN-BURN ENGINE - POTENTIAL ANALYSIS

        Kowalewicz, A. The Korean Society of Automotive Engineers 2001 International journal of automotive technology Vol.2 No.4

        Analysis of the thermodynamic cycle of IC engine from the point of view of economy and emissions was carried out. From this analysis potential capability of engine development was derived. This potential capability is lean-burn engine, fuelled with homogeneous mixture with $\lambda \geq$ 1.4. Several different modes of fuelling were proposed and tested on one-cylinder test engine from the point of view of extending lean operating limit of the engine, emissions and fuel economy. Among them were: fuelling with evaporated preheated gasoline, with gas (LPG evaporated) and with liquid butane. From these modes, fuelling with liquid butane injected to inlet port was selected and finally tested. This novel system of fuelling offered better than standard engine performances and emissions at lean operating limit. These results were validated on full-scale two-cylinder engine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼