RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental and Mechanism Investigation on Boiling Heat Transfer Characteristics of Alumina/Water Nanofluid on a Cylindrical Tube

        Hao Zhang,Zeng-en Li,Shan Qing,Zhuangzhuang Jia,Jiarui Xu,Lin Ma,Sixian Wang,Aimin Zhang,Zhumei Luo 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.10

        Nucleate pool boiling heat transfer experiments have been conducted to nanofluids on a horizontal cylinder tube under atmospheric pressure. The nanofluids are prepared by dispersing Al2O3 nanoparticles into distilled water at concentrations of 0.001, 0.01, 0.1, 1 and 2 wt.% with or without sodium, 4-dodecylbenzenesulfonate (SDBS). The experimental results showed that: nanofluids at lower concentrations (0.001 wt.% to 1 wt.%) can obviously enhance the pool boiling heat transfer performance, but signs of deterioration can be observed at higher concentration (2 wt.%). The presence of SDBS can obviously enhance the pool boiling heat transfer performance, and with the presence of SDBS, a maximum enhancement ratio of BHTC of 69.88%, and a maximum decrease ratio of super heat of 41.12% can be found in Group NS5 and NS4, respectively. The tube diameter and wall thickness of heating surface are the influential factors for boiling heat transfer coefficient. Besides, we find that Rohsenow formula failed to predict the characteristics of nanofluids. The mechanism study shows that: the decrease of surface tension, which leads to the decrease of bubble departure diameter, and the presence of agglomerates in nanofluids are the reasons for the enhanced pool boiling heat transfer performance. At higher concentration, particle deposition will lead to the decrease of distribution density of the vaporization core, and as a result of that, the boiling heat transfer performance will deteriorate.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼