RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Genome-wide identification of microRNAs and phased siRNAs in soybean roots under long-term salt stress

        Qian Wang,Yingxia Yang,Guoqing Lu,Xianjun Sun,Youren Feng,Shuangyong Yan,Huiyuan Zhang,Qiyan Jiang,Hui Zhang,Zheng Hu,Rui Chen 한국유전학회 2020 Genes & Genomics Vol.42 No.11

        Background Salinity stress, as the key limiting factor for agricultural productivity, can activate a series of molecular responses and alter gene expression in plants. Endogenous regulatory small RNAs, such as microRNAs (miRNAs) and phased siRNAs (phasiRNAs), play crucial roles during stress adaptation and prevent the injury from environmental circumstances. Objective To identify long-term salt stress responsive miRNAs and phasiRNAs as well as their associated genes and pathways in soybean roots. Methods Small RNA and degradome sequencing strategies were applied to genome widely investigate miRNAs and phasiRNAs in soybean roots under control and long-term salt stress conditions. Results In this study, stringent bioinformatic analysis led to the identifcation of 253 conserved and 38 novel miRNA candidates. Results of expression profling, target and endogenous target mimics predictions provided valuable clues to their functional roles. Furthermore, 156 genes were identifed to be capable of generating 21 nt and 24 nt phasiRNAs, in which 37 candidates were confrmed by degradome data for miRNA-directed cleavage. Approximately 90% of these phasiRNA loci were protein coding genes. And GO enrichment analysis pointed to “signal transduction” and “ADP binding” entries and refected the functional roles of identifed phasiRNA genes. Conclusion Taken together, our fndings extended the knowledge of salt responsive miRNAs and phasiRNAs in soybean roots, and provided valuable information for a better understanding of the regulatory events caused by small RNAs underlying plant adaptations to long-term salt stress.

      • KCI등재

        Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP

        Xie Guohua,Dong ping,Chen Hui,Xu Ling,Liu Yi,Ma Yanhui,Zheng Yingxia,Yang Junyao,Zhou Yunlan,Chen Lei,Shen Lisong 생화학분자생물학회 2021 Experimental and molecular medicine Vol.53 No.-

        ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼