RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Design Improvement of the Splitter Blade in the Centrifugal Pump Impeller Based on Theory of Boundary Vorticity Dynamics

        ZHAO, Binjuan,ZHANG, Chenghu,ZHAO, Youfei,FU, Yanxia,LIU, Qi,CHEN, Huilong Korean Society for Fluid machinery 2018 International journal of fluid machinery and syste Vol.11 No.1

        To improve the design of the splitter blade in the centrifugal pump impeller, inner flow numerical simulations are performed on the centrifugal pump impeller without splitter blades firstly, inner flow diagnoses are performed based on the theory of the boundary vorticity dynamics, and distributions of the boundary vorticity flux (BVF), friction force as well as vorticity on the inner walls of the impeller are carefully analyzed to find the location of bad flows and their dynamic sources. Later, according to the inner flow diagnosis results, splitter blades are designed and reformed for the original impeller. The inner flow filed in the impellers equipped with the preliminary splitter blade and reformed splitter blade are numerically simulated and diagnosed. Finally, comparisons are made among the three impellers, and it is found that, compared to the original impeller (impeller 0), the BVF, friction force and vorticity distribution in the impeller equipped with the preliminary splitter blade (impeller 1) has no obvious improvement, although the pump head increases, the efficiency decreases; the BVF, friction force and vorticity distribution in the impeller equipped with the reformed blade (impeller 2) has improved obviously, BVF peak decreases evidently and BVF distributes more uniformly, flow separation is inhibited, the hydraulic force acting on the impeller increases, with the pump head and efficiency increasing dramatically. It is proven that, flow diagnosis based on the theory of the boundary vorticity dynamics is an effective supplemental way for the design of the splitter blade in the centrifugal pump impeller, and will provide reference for the design of other turbo machinery as well.

      • KCI등재

        Design Improvement of the Splitter Blade in the Centrifugal Pump Impeller Based on Theory of Boundary Vorticity Dynamics

        Binjuan ZHAO,Chenghu ZHANG,Youfei ZHAO,Yanxia FU,Qi LIU,Huilong CHEN 한국유체기계학회 2018 International journal of fluid machinery and syste Vol.11 No.1

        To improve the design of the splitter blade in the centrifugal pump impeller, inner flow numerical simulations are performed on the centrifugal pump impeller without splitter blades firstly, inner flow diagnoses are performed based on the theory of the boundary vorticity dynamics, and distributions of the boundary vorticity flux (BVF), friction force as well as vorticity on the inner walls of the impeller are carefully analyzed to find the location of bad flows and their dynamic sources. Later, according to the inner flow diagnosis results, splitter blades are designed and reformed for the original impeller. The inner flow filed in the impellers equipped with the preliminary splitter blade and reformed splitter blade are numerically simulated and diagnosed. Finally, comparisons are made among the three impellers, and it is found that, compared to the original impeller (impeller 0), the BVF, friction force and vorticity distribution in the impeller equipped with the preliminary splitter blade (impeller 1) has no obvious improvement, although the pump head increases, the efficiency decreases; the BVF, friction force and vorticity distribution in the impeller equipped with the reformed blade (impeller 2) has improved obviously, BVF peak decreases evidently and BVF distributes more uniformly, flow separation is inhibited, the hydraulic force acting on the impeller increases, with the pump head and efficiency increasing dramatically. It is proven that, flow diagnosis based on the theory of the boundary vorticity dynamics is an effective supplemental way for the design of the splitter blade in the centrifugal pump impeller, and will provide reference for the design of other turbo machinery as well.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼