RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An investigation of seasonal variations in the microbiota of milk, feces, bedding, and airborne dust

        Nguyen Thuong Thi,Wu Haoming,Nishino Naoki 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.11

        Objective: The microbiota of dairy cow milk varies with the season, and this accounts in part for the seasonal variation in mastitis-causing bacteria and milk spoilage. The microbiota of the cowshed may be the most important factor because the teats of a dairy cow contact bedding material when the cow is resting. The objectives of the present study were to determine whether the microbiota of the milk and the cowshed vary between seasons, and to elucidate the relationship between the microbiota. Methods: We used 16S rRNA gene amplicon sequencing to investigate the microbiota of milk, feces, bedding, and airborne dust collected at a dairy farm during summer and winter. Results: The seasonal differences in the milk yield and milk composition were marginal. The fecal microbiota was stable across the two seasons. Many bacterial taxa of the bedding and airborne dust microbiota exhibited distinctive seasonal variation. In the milk microbiota, the abundances of Staphylococcaceae, Bacillaceae, Streptococcaceae, Microbacteriaceae, and Micrococcaceae were affected by the seasons; however, only Micrococcaceae had the same seasonal variation pattern as the bedding and airborne dust microbiota. Nevertheless, canonical analysis of principle coordinates revealed a distinctive group comprising the milk, bedding, and airborne dust microbiota. Conclusion: Although the milk microbiota is related to the bedding and airborne dust microbiota, the relationship may not account for the seasonal variation in the milk microbiota. Some major bacterial families stably found in the bedding and airborne dust microbiota, e.g., Staphylococcaceae, Moraxellaceae, Ruminococcaceae, and Bacteroidaceae, may have greater influences than those that varied between seasons.

      • KCI등재

        PROM2 promotes gemcitabine chemoresistance via activating the Akt signaling pathway in pancreatic cancer

        Wenbin Li,Yue Zhu,Kelin Zhang,Xianhuan Yu,Haoming Lin,Wenrui Wu,Yaorong Peng,Jian Sun 생화학분자생물학회 2020 Experimental and molecular medicine Vol.52 No.-

        In recent years, the deoxycytidine analogue gemcitabine (2′,2′,-difluorodeoxycytidine) has become the first-line chemotherapeutic agent for patients with pancreatic cancer. However, due to the intrinsic resistance of pancreatic cancer cells, gemcitabine-based chemotherapy yields limited disease control, with >85% disease progression at 6 months from diagnosis. Therefore, elucidating the mechanisms of chemoresistance is a critical step in improving cancer therapy, especially for the treatment of pancreatic cancer. We show PROM2, a transmembrane glycoprotein, is ubiquitously upregulated in pancreatic cancer cell. We also found higher PROM2 expression is associated with shortened overall and disease-free survival times in patients diagnosed with pancreatic cancer. We provide evidence that PROM2 promotes chemoresistance to gemcitabine both in vivo and in vitro. Mechanistically, we demonstrate that PROM2 could directly interacted with Akt and activates the Akt signaling pathway, which thus inhibiting gemcitabineinduced apoptosis. As further evidence, we show PROM2 expression and Akt phosphorylation both promote gemcitabine chemoresistance, and cause poorer survival in clinical samples with pancreatic cancer. Combining gemcitabine with the Akt inhibitor MK-2206 facilitated significant tumor shrinkage and dramatically elevated the survival status in mice xenografted with pancreatic cancer cells. Our findings not only establish PROM2 as a novel positive regulator of the Akt signaling pathway and a candidate prognostic indicator of gemcitabine response, but also provide a neo-therapeutic approach for patients resistant to gemcitabine treatment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼