RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Coupled arch dam-reservoir-massed foundation problem under different earthquake input mechanisms

        Varmazyari, M.,Sabbagh-Yazdi, S.R.,Mirzabozorg, H. Techno-Press 2021 Coupled systems mechanics Vol.10 No.5

        The aim of the present study is to investigate a coupled arch dam-reservoir-massed foundation problem under two earthquake input mechanisms. The problem nonlinearity originates from opening/slipping of the vertical contraction joints of the dam body. The reservoir-structure interaction is taken into account assuming compressible reservoir. Also, the meshing approach (structured mesh vs. unstructured one) in the foundation medium is investigated. The Karoun-I double curvature arch dam is selected as a case study. Three components of the 1994 Northridge earthquake are selected as the free-field ground motion. A deconvolution analysis in 3D space is conducted to adjust the amplitude and frequency contents of the earthquake ground motion applied to the bottom of the massed foundation to determine the desired acceleration response at various points on the dam-foundation interface taking into account the coupling between the foundation and the structure. It is found that in the deconvolved earthquake input models, the maximum tensile and the compressive stresses increase by 19% and 12%, respectively in comparison with those of the free-field input models. In addition, modeling foundation using the unstructured mesh decreases the maximum compressive stresses within the dam body by about 20% in comparison with that obtained using the structured mesh model. In the same way, the maximum crest displacements in the horizontal direction decreases by about 30%.

      • SCIESCOPUS

        Nonlinear behavior of concrete gravity dams and effect of input spatially variation

        Mirzabozorg, H.,Kianoush, R.,Varmazyari, M. Techno-Press 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.35 No.3

        In the present article, effect of non-uniform excitation due to spatially variation of seismic input on nonlinear response of concrete gravity dams is considered. The reservoir is assumed compressible. Isotropic damage mechanics approach is used to model static and dynamic nonlinear behavior of mass concrete in 2D space. The validity of utilized nonlinear model is considered using available theoretical results under static and dynamic conditions. The tallest monolith of Pine Flat dam is selected as a case study. Two cases are analyzed for considering the effect of limited wave propagation velocity on seismic behavior of the dam-reservoir system in which travelling velocities are chosen as 2000 m/s and infinity. It is found that tensile damage in neck and toe regions and also, in the vicinity of the base increase when the system is excited non-uniformly.

      • KCI등재

        Nonlinear behavior of concrete gravity dams and effect of input spatially variation

        H. Mirzabozorg,R. Kianoush,M. Varmazyari 국제구조공학회 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.35 No.3

        In the present article, effect of non-uniform excitation due to spatially variation of seismic input on nonlinear response of concrete gravity dams is considered. The reservoir is assumed compressible. Isotropic damage mechanics approach is used to model static and dynamic nonlinear behavior of mass concrete in 2D space. The validity of utilized nonlinear model is considered using available theoretical results under static and dynamic conditions. The tallest monolith of Pine Flat dam is selected as a case study. Two cases are analyzed for considering the effect of limited wave propagation velocity on seismic behavior of the dam-reservoir system in which travelling velocities are chosen as 2000 m/s and infinity. It is found that tensile damage in neck and toe regions and also, in the vicinity of the base increase when the system is excited non-uniformly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼