RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Frontal collision of internal solitary waves of first mode

        Terletska, K.,Jung, K.T.,Maderich, V.,Kim, K.O. Elsevier 2018 Wave motion Vol.77 No.-

        <P><B>Abstract</B></P> <P>The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Frontal collision of internal solitary waves is studied numerically. </LI> <LI> Collision results in a wave phase shift growing with wave amplitude. </LI> <LI> Nonlinear components of runup for waves of small and large amplitudes differs. </LI> <LI> Collision of waves of large amplitude leads to the shear instability. </LI> <LI> Collision of small and large amplitude waves triggers the shear instability. </LI> </UL> </P>

      • Head-on collision of internal waves with trapped cores

        Maderich, Vladimir,Jung, Kyung Tae,Terletska, Kateryna,Kim, Kyeong Ok Copernicus GmbH 2017 Nonlinear processes in geophysics Vol.24 No.4

        <P><p><strong>Abstract.</strong> The dynamics and energetics of a head-on collision of internal solitary waves (ISWs) with trapped cores propagating in a thin pycnocline were studied numerically within the framework of the Navier-Stokes equations for a stratified fluid. The peculiarity of this collision is that it involves trapped masses of a fluid. The interaction of ISWs differs for three classes of ISWs: (i) weakly non-linear waves without trapped cores, (ii) stable strongly non-linear waves with trapped cores, and (iii) shear unstable strongly non-linear waves. The wave phase shift of the colliding waves with equal amplitude grows as the amplitudes increase for colliding waves of classes (i) and (ii) and remains almost constant for those of class (iii). The excess of the maximum run-up amplitude, normalized by the amplitude of the waves, over the sum of the amplitudes of the equal colliding waves increases almost linearly with increasing amplitude of the interacting waves belonging to classes (i) and (ii); however, it decreases somewhat for those of class (iii). The colliding waves of class (ii) lose fluid trapped by the wave cores when amplitudes normalized by the thickness of the pycnocline are in the range of approximately between 1 and 1.75. The interacting stable waves of higher amplitude capture cores and carry trapped fluid in opposite directions with little mass loss. The collision of locally shear unstable waves of class (iii) is accompanied by the development of instability. The dependence of loss of energy on the wave amplitude is not monotonic. Initially, the energy loss due to the interaction increases as the wave amplitude increases. Then, the energy losses reach a maximum due to the loss of potential energy of the cores upon collision and then start to decrease. With further amplitude growth, collision is accompanied by the development of instability and an increase in the loss of energy. The collision process is modified for waves of different amplitudes because of the exchange of trapped fluid between colliding waves due to the conservation of momentum.</p> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼