RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Scalable synthesis of MOFs-derived ZnO/C nanohybrid: efficient electrocatalyst for oxygen evolution reaction in alkaline medium

        Munawar Tauseef,Bashir Ambreen,Mukhtar Faisal,Nadeem Muhammad Shahid,Manzoor Sumaira,Ashiq Muhammad Naeem,Khan Shoukat Alim,Koc Muammer,Iqbal Faisal 한국세라믹학회 2023 한국세라믹학회지 Vol.60 No.6

        One of the main goals of energy conversion research is to develop effi cient, nonprecious, and stable electrocatalysts to replace defi cient and unstable noble metal catalysts. Hence, this work described metal–organic frameworks (MOFs) derived ZnO/C hybrid via a hydrothermal route grown on the surface of conducting stainless steel substrate (SS). By using multiple physical techniques (XRD, FTIR, TEM, XPS, and EDX), we compared structural and morphological properties of ZnO/C hybrid and MOF-5 electrodes. The electrocatalytic behaviour of amiable and economical ZnO/C/SS catalyst was noticed in catalyzing oxygen evolution reaction (OER) in one mole KOH electrolyzer with low overpotential and excellent stability. Cyclic sweep voltammetry indicated that the ZnO/C/SS hybrid only needs an ultralow overpotential of 282 mV to achieve a current density of 10 mA  cm −1 for OER. In addition, ZnO/C/SS with a low Tafel slope of 39.3 mV/dec and higher 0.29  s −1 turnover frequency can serve as a profi cient electrocatalyst compared to commercial ZnO and MOF-5 electrodes. The stability of ZnO/C/SS hybrid electrocatalyst approaching minor chronoamperometric degradation after 55 h. The electrochemical response depicts that the successful synthesis of MOF-derived ZnO/C/SS catalyst provided abundant active centers and boosted an electron- rich environment to promote its future prosperity and facilitate practical applications for electrochemical water-splitting.

      • KCI등재

        Revolution of nuclear energy efficiency, economic complexity, air transportation and industrial improvement on environmental footprint cost: A novel dynamic simulation approach

        Ali Shahid,Jiang Junfeng,Hassan Syed Tauseef,Shah Ashfaq Ahmad 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.10

        The expansion of a country's ecological footprint generates resources for economic development. China's import bill and carbon footprint can be reduced by investing in green transportation and energy technologies. A sustainable environment depends on the cessation of climate change; the current study investigates nuclear energy efficiency, economic complexity, air transportation, and industrial improvement for reducing environmental footprint. Using data spanning the years 1983e2016, the dynamic autoregressive distributed lag simulation method has demonstrated the short- and long-term variability in the impact of regressors on the ecological footprint. The study findings revealed that economic complexity in China had been found to have a statistically significant impact on the country's ecological footprint. Moreover, the industrial improvement process is helpful for the ecological footprint in China. In the short term, air travel has a negative impact on the ecological footprint, but this effect diminishes over time. Additionally, energy innovation is negative and substantial both in the short and long run, thus demonstrating its positive role in reducing the ecological footprint. Policy implications can be extracted from a wide range of issues, including economic complexity, industrial improvement, air transportation, energy innovation, and ecological impact to achieve sustainable goals.

      • KCI등재

        Optoelectronic Properties and Temperature Dependent Mechanisms of Composite-Hydroxide-Mediated Approach for the Synthesis of CdO Nanomaterials

        Taj Muhammad Khan,Tauseef Shahid,Rana I. Shakoor 대한금속·재료학회 2015 ELECTRONIC MATERIALS LETTERS Vol.11 No.3

        We report the successful synthesis of polycrystalline CdO nanomaterials at various process temperatures in the range from (180°C - 300°C) by a single step, conventionally simple and cost effective approach. The approach is based on hydroxide melts as solvents and termed as composite-hydroxide-mediated (CHM) approach. The effect of growth temperature on particle nucleation and consequently on the fabrication and purity of CdO nanostructures is investigated for a constant reaction time (24 h). As revealed by x-ray diffraction and Raman spectroscopy, CdO nanostructures can be reproduced in high purity with no traces by varying the synthesis temperature. These nanostructures have random orientations and non-uniform distribution with average crystallite sizes varying from 27 nm down to 7 nm. A study of the optical properties, based on photoluminescence, has demonstrated that emission peaks of CdO nanomaterials are centered at 491 nm and 528 nm which signifies purity of the product from the CHM approach. The direct bandgap determined for CdO (2.49 eV - 2.51 eV) exhibits a blue-shift with process temperature. The photoluminescence peak at 491 nm is attributed to near band-edge emission. Based on experimental results size and morphology manipulation, and possible growth mechanisms for the synthesized product are proposed with CHM at low temperature and without surfactant.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼