RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재SCIE

        Green synthesis of DL-homocysteine decorated magnetic nanoparticles for selective and efficient mercury remediation from simulated wastewater: Kinetics, isotherm, and mechanism studies

        Pooja Gour,Jyotsna Kumar,Shivanjali Esther Arland,Lairikyengbam Deepti Roy,Naveed Rahman 대한환경공학회 2024 Environmental Engineering Research Vol.29 No.5

        The present study focuses on the facile green synthesis of magnetic nanoparticles (MNPs) using onion waste of Allium Cepa L. (MNP@OW) for effective removal of noxious mercury from simulated wastewater. Photogenically synthesized MNPs were functionalized with DL-homocysteine (HC@SiO2@MNP@OW) for selective mercury adsorption. Various characterization techniques were employed to confirm their physical properties. Vibrating sample magnetometer (VSM) studies indicated MNP@OW’s superparamagnetic nature with a saturation magnetization (Ms) of 48.35 emu/g, while HC@SiO2@MNP@OW had a reduced Ms of 4.52 emu/g due to a coating of non-magnetic silica and DL-homocysteine. Both adsorbents showed optimal adsorption at 80°C and pH 8. However, it is explicitly mentioned that HC@SiO2@MNP@OW demonstrated efficient mercury removal at a lower dosage and shorter contact time compared to MNP@OW. Fast separation times of 6 and 26 seconds for MNP@OW and HC@SiO2@MNP@OW, respectively, confirm their ease of separation from simulated wastewater. The Freundlich isotherm model fit the data well and kinetic analysis supported a pseudo-second-order model, revealing a chemisorption mechanism. Moreover, HC@SiO2@MNP@OW demonstrated high selectivity, even in the presence of co-existing ions. Green synthesized MNP@OW and HC@SiO2@MNP@OW exhibited promising potential as low-cost sorbents for efficient mercury removal from simulated wastewater, making them feasible for wastewater treatment in low-economic countries.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼