RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar

        Shahreen Izwan Anthonysamy,Pooya Lahijani,Maedeh Mohammadi,Abdul Rahman Mohamed 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.1

        This study investigates the catalytic oxidation of NO to NO2 over biomass-derived biochar at ambient temperature. Rubber seed shell (RSS) was used as lignocellulosic waste to develop biochar for NO capture. The NO adsorption capacity of pristine biochar was low, about 17.61mg/g at 30 oC. To enhance the NO uptake capacity of biochar, cerium (Ce) was introduced into the biochar surface through simple impregnation method. Upon this, the NO adsorption capacity of 3 wt% Ce-loaded biochar profoundly increased to 75.59mg/g at the same adsorption condition. This was confidently due to the excellent oxygen storage capacity of ceria which could react with free active sites on the biochar surface to form oxidized cites C(O). Characterization results indicated that the adsorbed species was in the form of -O-N=O, suggesting that the adsorption of NO was followed by reaction with surface oxidized sites to form NO2. Studying the kinetics of the NO adsorption using pseudo-second order, Avrami and Elovich models showed that chemisorption was the chief mechanism that governed the adsorption process and the activation energy for NO adsorption was estimated to be around 45 kJ/mol.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼