RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Immobilization of Recombinant Nanobiofiber CS3 Fimbriae onto Alginate Beads for Improvement of Cadmium Biosorption

        Sepideh Ghorbani,Fatemeh Tabandeh,Bagher Yakhchali,Mohammad Reza Mehrnia 한국생물공학회 2011 Biotechnology and Bioprocess Engineering Vol.16 No.5

        A cell surface display system with metalbinding properties was previously developed using CS3fimbriae, which are hollow tubes 20 nm-thick and 2 nm in diameter. In this study, hybrid CS3 pili were separated from recombinant Escherichia coli and entrapped in calcium alginate gel beads in order to improve their stabilization and also adsorption of heavy metals. The surface morphology of the gel beads containing pili was investigated by scanning electron microscopy (SEM). Immunofluorescence microscopy was employed to confirm the attachment of nanobiofibers to the alginate beads. The effects of three variables (sodium alginate concentration,protein to alginate mass ratio, and bead size) at two levels each on Cd^(2+) biosorption efficiency were investigated by full factorial experimental design. A second-order polynomial equation modeled the design space for the process response of cadmium removal capacity. The optimal values of the factors were obtained as follows: 1% sodium alginate concentration, 0.25 protein to alginate mass ratio,and a 6 mm bead size. Under these conditions, Cd^(2+) was adsorbed at 45.45 mg/g to the nanobiofiber. The results indicate that the immobilized recombinant hybrid CS3 pili may be an appropriate biosorbent for removal of heavy metals from polluted aquatic environments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼