RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Tool Wear in Longitudinal-Torsional Ultrasonic Vibration Assisted Drilling of CFRP/Ti Stacks and Its Influence on Drilling Quality

        Chunhao Wang,Pengnan Li,Shujian Li,Xinyi Qiu,Changping Li,Qingquan Jiang,Qiulin Niu,Tae Jo Ko 한국정밀공학회 2024 International Journal of Precision Engineering and Vol.25 No.1

        Longitudinal-torsional ultrasonic vibration assisted drilling (LTUVD) has received extensive attention as a new machining technology in recent years. Especially for the stacks structure similar to carbon fiber reinforced polymer/titanium alloy material (CFRP/Ti6Al4V), it has more significant machining advantages. However, the effect mechanism of longitudinal-torsional ultrasonic vibration (LTUV) on tool wear, the tool wear condition in LTUVD machining and its influence on machining quality are not clear. In this work, the effect of LTUV on the tool wear of CFRP/Ti stacks was analyzed, and the tool wear of CFRP/Ti stacks and its effect on the entrance, interface and hole wall were investigated by drilling experiments under LTUVD condition. The analysis demonstrated that LTUVD can reduce tool wear by reducing the force and temperature during CFRP/Ti stacks drilling. The typical characteristics of LTUVD drill wear were the reduction of the flank face width, the adhesion of Ti to the tool, the blunting and the fracture of the cutting edge. The worn tool shows different wear characteristics in different parts. Spindle speed is one of the key factors that affect the wear rate of the typical parts, such as chisel edge, outer edge corner and main cutting edge. The mean damage factor of the entrance and interface of the 17–20 holes drilled by LTUVD were 11.5% and 8.7% higher than those of the 1–4 holes respectively. As the tool wear intensifies, the hole wall of CFRP produced more pits and the flatness decreased. The hole wall roughness increased by 30.9% when the 17–20 holes were drilled compared with the 1–4 holes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼