RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        EFFECT OF SOOT PARTICLE SIZE ON FOUR BALL METALLIC WEAR USING ELECTRON MICROSCOPY IMAGE ANALYSIS

        Preechar Karin,Warawut Amornprapa,Park Watanawongskorn,Eakkawut Saenkhumvong,Chinda Charoenphonphanich,Katsunori Hanamura 한국자동차공학회 2020 International journal of automotive technology Vol.21 No.3

        The impact of soot primary nanoparticles affecting metal wear was investigated. The commercial Carbon Black (CB) with different primary particle sizes were mixed with the engine oil for simulating soot contamination. The physical properties of carbon black including density and hardness were calculated using Transmission Electron Microscopy (TEM) image analysis. The metallic wear test was evaluated by using a Four-ball wear tester. After the tests, the ball surfaces were inspected by utilizing High-Resolution Optical Microscope (OM), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX) analysis. Based on a Four-ball wear test, the 1 % by weight of carbon black contamination shows a bit higher average wear scar diameter (WSD), but the surface roughness is reduced. SEM micrograph of metallic wear scar for the engine oil without soot shows the area of grooves, plastic deformation and subsurface crack. On the other hand, when carbon black is added to the oil, it can be seen that there are many deep grooves along with the sliding direction. The relationship of calculated oil film thickness, primary nanoparticle size distribution, carbon atom density of soot and hardness is clearly explained metallic wear mechanisms.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼